First-order system least squares and the energetic variational approach for two-phase flow

This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.

[1]  Lei Tang,et al.  Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..

[2]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[3]  Lars Onsager,et al.  Fluctuations and Irreversible Process. II. Systems with Kinetic Energy , 1953 .

[4]  Xinfu Chen,et al.  Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .

[5]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[7]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[8]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[9]  Pavel B. Bochev,et al.  Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier--Stokes Equations: Part I , 1998 .

[10]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics , 2010, SIAM J. Sci. Comput..

[11]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[12]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[13]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[14]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics , 2010, SIAM J. Sci. Comput..

[15]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[16]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[17]  Lei Tang,et al.  Efficiency‐based h‐ and hp‐refinement strategies for finite element methods , 2008, Numer. Linear Algebra Appl..

[18]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[19]  Lei Tang,et al.  An Efficiency-Based Adaptive Refinement Scheme Applied to Incompressible, Resistive Magnetohydrodynamics , 2009, LSSC.

[20]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[21]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[22]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[23]  Hui Zhang,et al.  An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics , 2007, J. Comput. Phys..

[24]  K. Cheng Theory of Superconductivity , 1948, Nature.

[25]  Thomas A. Manteuffel,et al.  An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation , 2007, J. Comput. Phys..

[26]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[27]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[28]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for Geometrically Nonlinear Elasticity , 2006, SIAM J. Numer. Anal..

[29]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[30]  Thomas A. Manteuffel,et al.  Efficiency-based hand hp-refinement strategies for finite element methods , 2007 .

[31]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[32]  Thomas A. Manteuffel,et al.  Multilevel First-Order System Least Squares for Nonlinear Elliptic Partial Differential Equations , 2003, SIAM J. Numer. Anal..

[33]  Pavel B. Bochev,et al.  Analysis of Velocity-Flux Least-Squares Principles for the Navier--Stokes Equations: Part II , 1999 .

[34]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.