First-order system least squares and the energetic variational approach for two-phase flow
暂无分享,去创建一个
Ludmil T. Zikatanov | Thomas A. Manteuffel | Chun Liu | J. H. Adler | James J. Brannick | T. Manteuffel | L. Zikatanov | Chun Liu | J. Adler | J. Brannick
[1] Lei Tang,et al. Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..
[2] Chun Liu,et al. Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..
[3] Lars Onsager,et al. Fluctuations and Irreversible Process. II. Systems with Kinetic Energy , 1953 .
[4] Xinfu Chen,et al. Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .
[5] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[7] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[8] Jie Shen,et al. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .
[9] Pavel B. Bochev,et al. Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier--Stokes Equations: Part I , 1998 .
[10] Thomas A. Manteuffel,et al. First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics , 2010, SIAM J. Sci. Comput..
[11] Jie Shen,et al. A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..
[12] William L. Briggs,et al. A multigrid tutorial , 1987 .
[13] D. Kwak,et al. Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .
[14] Thomas A. Manteuffel,et al. First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics , 2010, SIAM J. Sci. Comput..
[15] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[16] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[17] Lei Tang,et al. Efficiency‐based h‐ and hp‐refinement strategies for finite element methods , 2008, Numer. Linear Algebra Appl..
[18] James J. Feng,et al. A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.
[19] Lei Tang,et al. An Efficiency-Based Adaptive Refinement Scheme Applied to Incompressible, Resistive Magnetohydrodynamics , 2009, LSSC.
[20] G. Carey,et al. Least-squares mixed finite elements for second-order elliptic problems , 1994 .
[21] Lars Onsager,et al. Fluctuations and Irreversible Processes , 1953 .
[22] J. Cahn,et al. A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .
[23] Hui Zhang,et al. An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics , 2007, J. Comput. Phys..
[24] K. Cheng. Theory of Superconductivity , 1948, Nature.
[25] Thomas A. Manteuffel,et al. An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation , 2007, J. Comput. Phys..
[26] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[27] Long-Qing Chen. Phase-Field Models for Microstructure Evolution , 2002 .
[28] Thomas A. Manteuffel,et al. First-Order System Least Squares for Geometrically Nonlinear Elasticity , 2006, SIAM J. Numer. Anal..
[29] Matemática,et al. Society for Industrial and Applied Mathematics , 2010 .
[30] Thomas A. Manteuffel,et al. Efficiency-based hand hp-refinement strategies for finite element methods , 2007 .
[31] T. Manteuffel,et al. FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .
[32] Thomas A. Manteuffel,et al. Multilevel First-Order System Least Squares for Nonlinear Elliptic Partial Differential Equations , 2003, SIAM J. Numer. Anal..
[33] Pavel B. Bochev,et al. Analysis of Velocity-Flux Least-Squares Principles for the Navier--Stokes Equations: Part II , 1999 .
[34] S. Brendle,et al. Calculus of Variations , 1927, Nature.