Potential of the electronic-nose for the diagnosis of bacterial and fungal diseases in fruit trees

Les instruments de nez electronique ont progresse rapidement au cours de la derniere decade, car le besoin de mesures tres sensibles, rapides et precises a considerablement stimule le developpement de ces capteurs en tant qu'outils de diagnostic. Etant donne que les reponses induites dans la plante par l'agent pathogene comprennent aussi des changements dans l'emission de composes volatiles, le nez electronique peut representer une alternative puissante et facile a utiliser pour le depistage rapide et fiable de materiel vegetal asymptomatique. Dans cette etude, le nez electronique EOS835 (Sacmi, Imola - Italie), base sur des semiconducteurs a metal-oxyde, a ete utilise. EOS835 a pu detecter des pommiers et poiriers asymptomatiques infectes experimentalement avec Erwinia amylovora (feu bacterien). Le nez electronique a aussi ete teste avec succes pour distinguer des pourritures a Botrytis et Sclerotinia sur des kiwis verts et jaunes. Meme si le nez electronique peut etre utilise avec succes en conditions experimentales pour le diagnostic precoce des maladies avant et apres la recolte, son application pratique en plein champ, dans des pepinieres et des stations d'emballage demande encore d'autres etudes.

[1]  T. Pearce,et al.  Computational parallels between the biological olfactory pathway and its analogue 'the electronic nose': Part II. Sensor-based machine olfaction. , 1997, Bio Systems.

[2]  S. Biondi,et al.  Postharvest 1-methylcyclopropene application in ripening control of ‘Stark Red Gold’ nectarines: Temperature-dependent effects on ethylene production and biosynthetic gene expression, fruit quality, and polyamine levels , 2005 .

[3]  J. Stetter Electrochemical sensors, sensor arrays, and computer algorithms: for detection and identification of airborne chemicals , 1986 .

[4]  F. Mencarelli,et al.  Influence of ethylene inhibition by 1-methylcyclopropene on apricot quality, volatile production, and glycosidase activity of low- and high-aroma varieties of apricots. , 2003, Journal of agricultural and food chemistry.

[5]  M. Lerdau,et al.  The Evolution of Function in Plant Secondary Metabolites , 2003, International Journal of Plant Sciences.

[6]  T A Dickinson,et al.  Current trends in 'artificial-nose' technology. , 1998, Trends in biotechnology.

[7]  J. Tumlinson,et al.  De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants , 1997, Plant physiology.

[8]  M. Serek,et al.  Effect of 1-methylcyclopropene and methylenecyclopropane on ethylene binding and ethylene action on cut carnations , 1996, Plant Growth Regulation.

[9]  E. Heinzle,et al.  Present and potential applications of mass spectrometry for bioprocess research and control. , 1992, Journal of biotechnology.

[10]  Tetsuo Aishima,et al.  AROMA DISCRIMINATION BY PATTERN RECOGNITION ANALYSIS OF RESPONSES FROM SEMICONDUCTOR GAS SENSOR ARRAY , 1991 .

[11]  U. Ravid,et al.  Effect of 1-methylcyclopropene on volatile emission and aroma in cv. Anna apples. , 2002, Journal of agricultural and food chemistry.

[12]  C. Natale,et al.  Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples , 2003 .

[13]  David C. Slaughter,et al.  Freeze damage detection in oranges using gas sensors , 2005 .

[14]  N. Magan,et al.  Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. , 2000, Journal of stored products research.

[15]  Stefano Predieri,et al.  Pear Fruit Volatiles , 2010 .

[16]  Francesco Spinelli,et al.  NEAR INFRARED SPECTROSCOPY (NIRS): PERSPECTIVE OF FIRE BLIGHT DETECTION IN ASYMPTOMATIC PLANT MATERIAL , 2006 .

[17]  Eduard Llobet,et al.  Non-destructive banana ripeness determination using a neural network-based electronic nose , 1999 .

[18]  S. Dorn,et al.  Systemically Induced Plant Volatiles Emitted at the Time of “Danger” , 2001, Journal of Chemical Ecology.

[19]  J. Tumlinson,et al.  Plant volatiles as a defense against insect herbivores , 1999, Plant physiology.

[20]  N. Magan,et al.  Detection and differentiation between mycotoxigenic and non‐mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes , 2000, Journal of applied microbiology.

[21]  Giorgio Sberveglieri,et al.  Monitoring plants health in greenhouse for space missions , 2005 .

[22]  Murat O. Balaban,et al.  Discrimination of Plant Pathogenic Bacteria Using an electronicronic Nose , 2004 .

[23]  N. Magan,et al.  Electronic noses and disease diagnostics , 2004, Nature Reviews Microbiology.

[24]  J. Gardner,et al.  Application of an electronic nose to the discrimination of coffees , 1992 .

[25]  J. Brezmes,et al.  Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with pinklady apples , 2001 .

[26]  Julian W. Gardner,et al.  Sensors and Sensory Systems for an Electronic Nose , 1992 .

[27]  H. Leyser,et al.  Ethylene as a Signal Mediating the Wound Response of Tomato Plants , 1996, Science.

[28]  Michael P. Craven,et al.  The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer pe , 1998 .

[29]  Markus Lipp,et al.  Characterisation of Italian vinegar by pyrolysis–mass spectrometry and a sensor device (‘electronic nose’) , 1998 .

[30]  N. Magan,et al.  Use of an electronic nose for the early detection and differentiation between spoilage fungi , 1998, Letters in applied microbiology.

[31]  J. Holopainen,et al.  Multiple functions of inducible plant volatiles. , 2004, Trends in plant science.

[32]  Ted C. J. Turlings,et al.  An Elicitor of Plant Volatiles from Beet Armyworm Oral Secretion , 1997 .

[33]  A. Pavlou,et al.  Sniffing out the Truth: Clinical Diagnosis Using the Electronic Nose , 2000, Clinical chemistry and laboratory medicine.

[34]  Tim C. Pearce,et al.  Machine olfaction: intelligent sensing of odours , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[35]  H. Barr,et al.  An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. , 2000, Biosensors & bioelectronics.

[36]  R. W. Marshall,et al.  Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. , 1997 .

[37]  Ibtisam E. Tothill,et al.  Biosensors developments and potential applications in the agricultural diagnosis sector , 2001 .

[38]  M. Farag,et al.  Elicitors and priming agents initiate plant defense responses , 2005, Photosynthesis Research.

[39]  M Smith,et al.  Near infrared spectroscopy. , 1999, British journal of anaesthesia.

[40]  C. Natale,et al.  An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life , 2004 .

[41]  Reinaldo Campos-Vargas,et al.  The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis , 2009 .

[42]  Joseph R. Stetter,et al.  Detection and discrimination of coliform bacteria with gas sensor arrays , 2000 .

[43]  Antonella Macagnano,et al.  Artificial olfaction systems : principles and applications to food analysis , 2001 .