α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-attractors from supersymmetry breaking
暂无分享,去创建一个
[1] J. Ellis,et al. Building models of inflation in no-scale supergravity , 2020, 2009.01709.
[2] Yermek Aldabergenov. Volkov–Akulov–Starobinsky supergravity revisited , 2020, The European Physical Journal C.
[3] Yermek Aldabergenov. Aspects of gauged R symmetry in SU(1,1)/U(1) supergravity , 2019, Physical Review D.
[4] S. Ketov,et al. Generalized dilaton–axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity , 2019, The European Physical Journal C.
[5] J. Ellis,et al. Unified no-scale attractors , 2019, Journal of Cosmology and Astroparticle Physics.
[6] C. Pallis. Gravity-mediated SUSY breaking, R symmetry, and hyperbolic Kähler geometry , 2018, Physical Review D.
[7] I. Valenzuela,et al. Swampland distance conjecture, inflation and α-attractors , 2018, Journal of High Energy Physics.
[8] J. Ellis,et al. A general classification of Starobinsky-like inflationary avatars of SU(2,1)/SU(2)×U(1) no-scale supergravity , 2018, Journal of High Energy Physics.
[9] J. Ellis,et al. De Sitter vacua in no-scale supergravity , 2018, Journal of High Energy Physics.
[10] J. Ellis,et al. From R2 gravity to no-scale supergravity , 2017, 1711.11051.
[11] I. Antoniadis,et al. Inflation from supersymmetry breaking , 2017, The European Physical Journal C.
[12] I. Antoniadis,et al. Inflation from supergravity with gauged R-symmetry in de Sitter vacuum , 2016, 1608.02121.
[13] S. Ketov,et al. SUSY breaking after inflation in supergravity with inflaton in a massive vector supermultiplet , 2016, 1607.05366.
[14] T. Yanagida,et al. Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation , 2016, 1604.04911.
[15] Yusuke Yamada,et al. de Sitter vacuum from R 2 supergravity , 2015, 1509.04987.
[16] J. Ellis,et al. No-scale inflation , 2015, 1507.02308.
[17] Andrei Linde,et al. Hyperbolic geometry of cosmological attractors , 2015, 1504.05557.
[18] Andrei Linde. Single-field α-attractors , 2015, 1504.00663.
[19] J. Ellis,et al. Phenomenological aspects of no-scale inflation models , 2015, 1503.08867.
[20] G. Dall’Agata,et al. On sgoldstino-less supergravity models of inflation , 2014, 1411.2605.
[21] A. Riotto,et al. Supersymmetry breaking and inflation from higher curvature supergravity , 2014, 1409.8299.
[22] S. Ferrara,et al. The Volkov–Akulov–Starobinsky supergravity , 2014, 1403.3269.
[23] R. Kallosh,et al. Cosmological attractor models and higher curvature supergravity , 2014, 1403.2932.
[24] S. Ketov. Starobinsky Model in $N=2$ Supergravity , 2014, 1402.0626.
[25] Andrei Linde,et al. Superconformal inflationary α-attractors , 2013, 1311.0472.
[26] S. Ketov,et al. Old-minimal supergravity models of inflation , 2013, 1309.7494.
[27] Andrei Linde,et al. Minimal Supergravity Models of Inflation , 2013, 1307.7696.
[28] A. Riotto,et al. On the Starobinsky model of inflation from supergravity , 2013, 1307.1137.
[29] Andrei Linde,et al. Superconformal generalizations of the Starobinsky model , 2013, 1306.3214.
[30] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[31] M. Postma,et al. Sgoldstino inflation , 2012, 1203.1907.
[32] R. Jimenez,et al. A Minimal Inflation Scenario , 2011, 1101.4948.
[33] Masahide Yamaguchi,et al. Supergravity-based inflation models: a review , 2011, 1101.2488.
[34] S. Ferrara,et al. Four curious supergravities , 2010, 1010.3173.
[35] S. Ferrara,et al. Generalized mirror symmetry and trace anomalies , 2010, 1009.4439.
[36] G. Kribs,et al. Viable gravity-mediated supersymmetry breaking , 2010, 1008.1798.
[37] R. Jimenez,et al. Minimal Inflation , 2009, 1001.0010.
[38] H. Ooguri,et al. On the Geometry of the String Landscape and the Swampland , 2006, hep-th/0605264.
[39] L. Motl,et al. The String landscape, black holes and gravity as the weakest force , 2006, hep-th/0601001.
[40] K. Izawa. Supersymmetry-Breaking Models of Inflation , 1997, hep-ph/9708315.
[41] S. Cecotti. Higher derivative supergravity is equivalent to standard supergravity coupled to matter , 1987 .
[42] L. Mclerran,et al. N = 2 no-scale supergravity , 1987 .
[43] B. Ovrut. Supersymmetry, supergravity, and particle physics , 1986 .
[44] A. Starobinsky,et al. A new type of isotropic cosmological models without singularity , 1980 .
[45] A. U.S.,et al. General sGoldstino inflation , 2016 .
[46] S. Ferrara,et al. Seven-Disk Manifold, α-attractors and B-modes , 2016 .