α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-attractors from supersymmetry breaking

[1]  J. Ellis,et al.  Building models of inflation in no-scale supergravity , 2020, 2009.01709.

[2]  Yermek Aldabergenov Volkov–Akulov–Starobinsky supergravity revisited , 2020, The European Physical Journal C.

[3]  Yermek Aldabergenov Aspects of gauged R symmetry in SU(1,1)/U(1) supergravity , 2019, Physical Review D.

[4]  S. Ketov,et al.  Generalized dilaton–axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity , 2019, The European Physical Journal C.

[5]  J. Ellis,et al.  Unified no-scale attractors , 2019, Journal of Cosmology and Astroparticle Physics.

[6]  C. Pallis Gravity-mediated SUSY breaking, R symmetry, and hyperbolic Kähler geometry , 2018, Physical Review D.

[7]  I. Valenzuela,et al.  Swampland distance conjecture, inflation and α-attractors , 2018, Journal of High Energy Physics.

[8]  J. Ellis,et al.  A general classification of Starobinsky-like inflationary avatars of SU(2,1)/SU(2)×U(1) no-scale supergravity , 2018, Journal of High Energy Physics.

[9]  J. Ellis,et al.  De Sitter vacua in no-scale supergravity , 2018, Journal of High Energy Physics.

[10]  J. Ellis,et al.  From R2 gravity to no-scale supergravity , 2017, 1711.11051.

[11]  I. Antoniadis,et al.  Inflation from supersymmetry breaking , 2017, The European Physical Journal C.

[12]  I. Antoniadis,et al.  Inflation from supergravity with gauged R-symmetry in de Sitter vacuum , 2016, 1608.02121.

[13]  S. Ketov,et al.  SUSY breaking after inflation in supergravity with inflaton in a massive vector supermultiplet , 2016, 1607.05366.

[14]  T. Yanagida,et al.  Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation , 2016, 1604.04911.

[15]  Yusuke Yamada,et al.  de Sitter vacuum from R 2 supergravity , 2015, 1509.04987.

[16]  J. Ellis,et al.  No-scale inflation , 2015, 1507.02308.

[17]  Andrei Linde,et al.  Hyperbolic geometry of cosmological attractors , 2015, 1504.05557.

[18]  Andrei Linde Single-field α-attractors , 2015, 1504.00663.

[19]  J. Ellis,et al.  Phenomenological aspects of no-scale inflation models , 2015, 1503.08867.

[20]  G. Dall’Agata,et al.  On sgoldstino-less supergravity models of inflation , 2014, 1411.2605.

[21]  A. Riotto,et al.  Supersymmetry breaking and inflation from higher curvature supergravity , 2014, 1409.8299.

[22]  S. Ferrara,et al.  The Volkov–Akulov–Starobinsky supergravity , 2014, 1403.3269.

[23]  R. Kallosh,et al.  Cosmological attractor models and higher curvature supergravity , 2014, 1403.2932.

[24]  S. Ketov Starobinsky Model in $N=2$ Supergravity , 2014, 1402.0626.

[25]  Andrei Linde,et al.  Superconformal inflationary α-attractors , 2013, 1311.0472.

[26]  S. Ketov,et al.  Old-minimal supergravity models of inflation , 2013, 1309.7494.

[27]  Andrei Linde,et al.  Minimal Supergravity Models of Inflation , 2013, 1307.7696.

[28]  A. Riotto,et al.  On the Starobinsky model of inflation from supergravity , 2013, 1307.1137.

[29]  Andrei Linde,et al.  Superconformal generalizations of the Starobinsky model , 2013, 1306.3214.

[30]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[31]  M. Postma,et al.  Sgoldstino inflation , 2012, 1203.1907.

[32]  R. Jimenez,et al.  A Minimal Inflation Scenario , 2011, 1101.4948.

[33]  Masahide Yamaguchi,et al.  Supergravity-based inflation models: a review , 2011, 1101.2488.

[34]  S. Ferrara,et al.  Four curious supergravities , 2010, 1010.3173.

[35]  S. Ferrara,et al.  Generalized mirror symmetry and trace anomalies , 2010, 1009.4439.

[36]  G. Kribs,et al.  Viable gravity-mediated supersymmetry breaking , 2010, 1008.1798.

[37]  R. Jimenez,et al.  Minimal Inflation , 2009, 1001.0010.

[38]  H. Ooguri,et al.  On the Geometry of the String Landscape and the Swampland , 2006, hep-th/0605264.

[39]  L. Motl,et al.  The String landscape, black holes and gravity as the weakest force , 2006, hep-th/0601001.

[40]  K. Izawa Supersymmetry-Breaking Models of Inflation , 1997, hep-ph/9708315.

[41]  S. Cecotti Higher derivative supergravity is equivalent to standard supergravity coupled to matter , 1987 .

[42]  L. Mclerran,et al.  N = 2 no-scale supergravity , 1987 .

[43]  B. Ovrut Supersymmetry, supergravity, and particle physics , 1986 .

[44]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[45]  A. U.S.,et al.  General sGoldstino inflation , 2016 .

[46]  S. Ferrara,et al.  Seven-Disk Manifold, α-attractors and B-modes , 2016 .