Optimal np Control Charts with Variable Sample Sizes or Variable Sampling Intervals

Many researches have shown that the adaptive control charts are more effective than the traditional static ones in detecting process shifts. This paper develops an algorithm for the optimization designs of the Variable Sample Size (VSS) np chart and the Variable Sampling Intervals (VSI) np chart for monitoring process fraction nonconforming p. The properties of the VSI and VSS np charts are measured by the steady-state Average Time to Signal (ATS). The performance of these adaptive np charts are studied and compared with the static np charts. It is found that the adaptive np charts do improve the effectiveness significantly, especially for detecting small or moderate process shifts.

[1]  Marion R. Reynolds,et al.  Shewhart and EWMA Variable Sampling Interval Control Charts with Sampling at Fixed Times , 1996 .

[2]  Timothy S. Vaughan,et al.  Variable sampling interval np process control chart , 1992 .

[3]  TAPAS K. DAS,et al.  Economic design of dual-sampling-interval policies for X¯ charts with and without run rules , 1997 .

[4]  Antonio Fernando Branco Costa,et al.  X̄ Charts with Variable Parameters , 1999 .

[5]  George Tagaras A Survey of Recent Developments in the Design of Adaptive Control Charts , 1998 .

[6]  M. R. Reynolds,et al.  A general approach to modeling CUSUM charts for a proportion , 2000 .

[7]  J. M. Calabrese Bayesian process control for attributes , 1995 .

[8]  Antonio Fernando Branco Costa,et al.  X̄ charts with variable sample size , 1994 .

[9]  Ken Nishina,et al.  Performance of cusum charts from the viewpoint of change‐point estimation in the presence of autocorrelation , 1996 .

[10]  Marion R. Reynolds,et al.  CUSUM Control Charts with Variable Sample Sizes and Sampling Intervals , 2001 .

[11]  U. Rendtel,et al.  Cusum-schemes with variable sampling intervals and sample sizes , 1990 .

[12]  Antonio Fernando Branco Costa,et al.  Joint X̄ and R Charts with Variable Sample Sizes and Sampling Intervals , 1999 .

[13]  J. B. Keats,et al.  X¯ chart with adaptive sample sizes , 1993 .

[14]  Evan L. Porteus,et al.  Opportunities for Improved Statistical Process Control , 1997 .

[15]  D. Montgomery,et al.  A Combined Adaptive Sample Size and Sampling Interval X Control Scheme , 1994 .

[16]  Antonio Fernando Branco Costa,et al.  X̄ Chart with Variable Sample Size and Sampling Intervals , 1997 .

[17]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[18]  George C. Runger,et al.  Adaptative sampling for process control , 1991 .

[19]  Marion R. Reynolds,et al.  EWMA control charts with variable sample sizes and variable sampling intervals , 2001 .

[20]  Joseph J. Pignatiello,et al.  Estimation of the Change Point of a Normal Process Mean in SPC Applications , 2001 .

[21]  Zachary G. Stoumbos,et al.  A CUSUM Chart for Monitoring a Proportion When Inspecting Continuously , 1999 .

[22]  Joseph J. Pignatiello,et al.  IDENTIFYING THE TIME OF A STEP-CHANGE WITH X 2 CONTROL CHARTS , 1998 .

[23]  Douglas C. Montgomery,et al.  ADAPTIVE SAMPLING ENHANCEMENTS FOR SHEWHART CONTROL CHARTS , 1993 .

[24]  U. Rendtel The Use of Generalized CUSUM-Schemes to Control the Percent Defective of a Continuous Production Process , 1987 .

[25]  Jean-Jacques Daudin,et al.  Double sampling X charts , 1992 .

[26]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .

[27]  J. Daudin,et al.  Double Sampling Charts , 1992 .

[28]  Edward G. Schilling,et al.  Juran's Quality Handbook , 1998 .