Money Doesn't Grow on Trees, but Forecasts Do: Forecasting Extreme Precipitation with Random Forests

AbstractApproximately 11 years of reforecasts from NOAA’s Second-Generation Global Ensemble Forecast System Reforecast (GEFS/R) model are used to train a contiguous United States (CONUS)-wide gridd...

[1]  W. Gallus,et al.  Neighborhood-Based Verification of Precipitation Forecasts from Convection-Allowing NCAR WRF Model Simulations and the Operational NAM , 2010 .

[2]  Thomas M. Hamill,et al.  Ensemble Reforecasting: Improving Medium-Range Forecast Skill Using Retrospective Forecasts , 2004 .

[3]  Nigel Roberts,et al.  Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom , 2008 .

[4]  Gregory R. Herman,et al.  Extreme Precipitation in Models: An Evaluation , 2016 .

[5]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[6]  Jonathan J. Gourley,et al.  Improving Flash Flood Forecasts: The HMT-WPC Flash Flood and Intense Rainfall Experiment , 2015 .

[7]  Paul J. Roebber Adaptive Evolutionary Programming , 2015 .

[8]  Klaus Wolter,et al.  What History Tells Us about 2015 U.S. Daily Rainfall Extremes , 2016 .

[9]  Valery J. Dagostaro,et al.  New NGM-Based MOS Guidance for Maximum/Minimum Temperature, Probability of Precipitation, Cloud Amount, and Surface Wind , 1990 .

[10]  Thomas M. Hamill,et al.  Probabilistic Quantitative Precipitation Forecasts Based on Reforecast Analogs: Theory and Application , 2006 .

[11]  P. Friederichs,et al.  Generating and Calibrating Probabilistic Quantitative Precipitation Forecasts from the High-Resolution NWP Model COSMO-DE , 2012 .

[12]  Christopher A. Davis,et al.  Coherence of Warm-Season Continental Rainfall in Numerical Weather Prediction Models , 2003 .

[13]  R. Schumacher,et al.  A 10-Year Survey of Extreme Rainfall Events in the Central and Eastern United States Using Gridded Multisensor Precipitation Analyses , 2014 .

[14]  Harold E. Brooks,et al.  Spatial and Temporal Characteristics of Heavy Hourly Rainfall in the United States , 2013 .

[15]  R. Rotunno,et al.  Mesoscale Predictability of Moist Baroclinic Waves: Convection-Permitting Experiments and Multistage Error Growth Dynamics , 2007 .

[16]  D. Stensrud,et al.  Climatology of Heavy Rain Events in the United States from Hourly Precipitation Observations , 2000 .

[17]  D. Seo,et al.  Assessment and Implications of NCEP Stage IV Quantitative Precipitation Estimates for Product Intercomparisons , 2016 .

[18]  R. Rotunno,et al.  Effects of Moist Convection on Mesoscale Predictability , 2003 .

[19]  Kevin W. Manning,et al.  Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model , 2008 .

[20]  Frederick Anthony Eckel,et al.  Effective mesoscale, short-range ensemble forecasting , 2003 .

[21]  Richard H. Johnson,et al.  Mesoscale Processes Contributing to Extreme Rainfall in a Midlatitude Warm-Season Flash Flood* , 2008 .

[22]  Evaluations of NAM Forecasts on Midtropospheric Perturbation-Induced Convective Storms over the U.S. Northern Plains , 2009 .

[23]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[24]  J. Michael Fritsch,et al.  Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy , 2004 .

[25]  Rob J Hyndman,et al.  Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond , 2016 .

[26]  A. H. Murphy A New Vector Partition of the Probability Score , 1973 .

[27]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[28]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[29]  Rita D. Roberts,et al.  Summary of Convective Storm Initiation and Evolution during IHOP: Observational and Modeling Perspective , 2006 .

[30]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[31]  Keith F. Brill,et al.  Precipitation and Temperature Forecast Performance at the Weather Prediction Center , 2014 .

[32]  Richard H. Grumm,et al.  Utilizing Normalized Anomalies to Assess Synoptic-Scale Weather Events in the Western United States , 2010 .

[33]  William A. Gallus,et al.  The Impact of Large-Scale Forcing on Skill of Simulated Convective Initiation and Upscale Evolution with Convection-Allowing Grid Spacings in the WRF* , 2013 .

[34]  F. Martin Ralph,et al.  Climatological characteristics of atmospheric rivers and their inland penetration over the western united states , 2013 .

[35]  A. Hollingsworth,et al.  Probabilistic Predictions of Precipitation Using the ECMWF Ensemble Prediction System , 1999 .

[36]  S. J. Weiss,et al.  Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather : The SPC/NSSL spring program 2004 , 2006 .

[37]  Maurice Schmeits,et al.  Comparing Area Probability Forecasts of (Extreme) Local Precipitation Using Parametric and Machine Learning Statistical Postprocessing Methods , 2018, Monthly Weather Review.

[38]  Sarah Heim,et al.  Precipitation-Frequency Atlas of the United States , 2009 .

[39]  Amy McGovern,et al.  Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts , 2014 .

[40]  Ming Xue,et al.  Machine learning enhancement of Storm Scale Ensemble precipitation forecasts , 2012, CIDU.

[41]  Richard H. Grumm,et al.  Assessing the Potential for Rare Precipitation Events with Standardized Anomalies and Ensemble Guidance at the Hydrometeorological Prediction Center , 2009 .

[42]  Roberto Buizza,et al.  The ECMWF Ensemble Prediction System , 1997 .

[43]  Gregory R. Herman,et al.  Double Impact: When Both Tornadoes and Flash Floods Threaten the Same Place at the Same Time , 2015 .

[44]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[45]  B. M. Lewis,et al.  OBJECTIVE PREDICTION OF FIVE-DAY MEAN TEMPERATURES DURING WINTER , 1959 .

[46]  Charles A. Doswell,et al.  Precipitation Forecasting Using a Neural Network , 1999 .

[47]  Carla E. Brodley,et al.  Multivariate decision trees , 2004, Machine Learning.

[48]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[49]  Robert F. Cahalan,et al.  Sampling Errors in the Estimation of Empirical Orthogonal Functions , 1982 .

[50]  Robert L. Vislocky,et al.  Performance of an Advanced MOS System in the 1996–97 National Collegiate Weather Forecasting Contest , 1997 .

[51]  W. Gallus,et al.  Comparison of the Diurnal Precipitation Cycle in Convection-Resolving and Non-Convection-Resolving Mesoscale Models , 2007 .

[52]  Steven E. Koch,et al.  The use of a modified Ebert-McBride technique to evaluate mesoscale model QPF as a function of convective system morphology during IHOP 2002 , 2006 .

[53]  Wei Qiao,et al.  Support vector machine-based short-term wind power forecasting , 2011, 2011 IEEE/PES Power Systems Conference and Exposition.

[54]  E. Nielsen Using convection-allowing ensembles to understand the predictability of extreme rainfall , 2016 .

[55]  S. E. Haupt,et al.  Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather , 2017 .

[56]  Craig H. Bishop,et al.  The THORPEX Interactive Grand Global Ensemble , 2010 .

[57]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[58]  J. Schaake,et al.  A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations , 2007 .

[59]  H. Andrieu,et al.  The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory , 2005 .

[60]  Adam J. Clark,et al.  Factors Influencing the Development and Maintenance of Nocturnal Heavy-Rain-Producing Convective Systems in a Storm-Scale Ensemble , 2013 .

[61]  Matthias Steiner,et al.  Assessment of the High-Resolution Rapid Refresh Model’s Ability to Predict Mesoscale Convective Systems Using Object-Based Evaluation , 2015 .

[62]  Mark S Antolik,et al.  An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts , 2000 .

[63]  Yang Hong,et al.  Evaluation of Tools Used for Monitoring and Forecasting Flash Floods in the United States , 2012 .

[64]  V. Chandrasekar,et al.  The Great Colorado Flood of September 2013 , 2015 .

[65]  H. Glahn,et al.  The Use of Model Output Statistics (MOS) in Objective Weather Forecasting , 1972 .

[66]  S. J. Weiss,et al.  Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-Allowing NWP , 2008 .

[67]  Soroosh Sorooshian,et al.  HYDROLOGIC VERIFICATION A Call for Action and Collaboration , 2007 .

[68]  Yuejian Zhu,et al.  Initial Perturbations Based on the Ensemble Transform ( ET ) Technique in the NCEP Global Ensemble Forecast System , 2022 .

[69]  Gregory R. Herman,et al.  Using Reforecasts to Improve Forecasting of Fog and Visibility for Aviation , 2016 .

[70]  Renate Hagedorn,et al.  Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part II: Precipitation , 2008 .

[71]  S. E. Haupt,et al.  Storm-Based Probabilistic Hail Forecasting with Machine Learning Applied to Convection-Allowing Ensembles , 2017 .

[72]  G. Reuter,et al.  Spatial Forecasts of Maximum Hail Size Using Prognostic Model Soundings and HAILCAST , 2006 .

[73]  G. Lackmann The South-Central U.S. Flood of May 2010: Present and Future* , 2013 .

[74]  Thomas M. Hamill,et al.  Statistical Postprocessing of Ensemble Precipitation Forecasts by Fitting Censored, Shifted Gamma Distributions* , 2015 .

[75]  Quan J. Wang,et al.  A review of advances in flash flood forecasting , 2011 .

[76]  Thomas M. Hamill,et al.  Measuring forecast skill: is it real skill or is it the varying climatology? , 2006 .

[77]  Matthias Steiner,et al.  Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique , 2016 .

[78]  Stéphane Vannitsem,et al.  Adaptive Kalman Filtering for Postprocessing Ensemble Numerical Weather Predictions , 2017 .

[79]  J. Whitaker,et al.  NOAA's Second-Generation Global Medium-Range Ensemble Reforecast Dataset , 2013 .

[80]  Changes in the Systematic Errors of Global Reforecasts due to an Evolving Data Assimilation System , 2017 .

[81]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[82]  Russ S. Schumacher,et al.  Characteristics of U.S. extreme rain events during 1999-2003 , 2006 .

[83]  John D. Ramshaw,et al.  Conservative rezoning algorithm for generalized two-dimensional meshes☆ , 1985 .

[84]  Jeffrey A. Baars,et al.  Performance of national weather service forecasts compared to operational, consensus, and weighted model output statistics , 2005 .

[85]  Thomas M. Hamill,et al.  Analog Probabilistic Precipitation Forecasts Using GEFS Reforecasts and Climatology-Calibrated Precipitation Analyses* , 2015 .

[86]  Gregory R. Herman,et al.  “Dendrology” in Numerical Weather Prediction: What Random Forests and Logistic Regression Tell Us about Forecasting Extreme Precipitation , 2018, Monthly Weather Review.

[87]  Renate Hagedorn,et al.  Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part I: Two-Meter Temperatures , 2008 .

[88]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[89]  Robert J. Bermowitz An Application of Model Output Statistics to Forecasting Quantitative Precipitation , 1975 .

[90]  Roman Krzysztofowicz,et al.  Climatology-Calibrated Precipitation Analysis at Fine Scales: Statistical Adjustment of Stage IV toward CPC Gauge-Based Analysis , 2014 .

[91]  Gang Xu,et al.  An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations , 2001 .

[92]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[93]  Richard L. Pfeffer,et al.  Comparison of Methodologies for Probabilistic Quantitative Precipitation Forecasting , 2002 .