The Relativized Second Eigenvalue Conjecture of Alon

We prove a relativization of the Alon Second Eigenvalue Conjecture for all $d$-regular base graphs, $B$, with $d\ge 3$: for any $\epsilon>0$, we show that a random covering map of degree $n$ to $B$ has a new eigenvalue greater than $2\sqrt{d-1}+\epsilon$ in absolute value with probability $O(1/n)$. Furthermore, if $B$ is a Ramanujan graph, we show that this probability is proportional to $n^{-{\eta_{\rm \,fund}}(B)}$, where ${\eta_{\rm \,fund}}(B)$ is an integer depending on $B$, which can be computed by a finite algorithm for any fixed $B$. For any $d$-regular graph, $B$, ${\eta_{\rm \,fund}}(B)$ is greater than $\sqrt{d-1}$. Our proof introduces a number of ideas that simplify and strengthen the methods of Friedman's proof of the original conjecture of Alon. The most significant new idea is that of a ``certified trace,'' which is not only greatly simplifies our trace methods, but is the reason we can obtain the $n^{-{\eta_{\rm \,fund}}(B)}$ estimate above. This estimate represents an improvement over Friedman's results of the original Alon conjecture for random $d$-regular graphs, for certain values of $d$.

[1]  Antoine Joux,et al.  The action of a few permutations on r-tuples is quickly transitive , 1998, Random Struct. Algorithms.

[2]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[3]  Benny Sudakov,et al.  Spectra of lifted Ramanujan graphs , 2009, 0911.4148.

[4]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[5]  Avi Wigderson,et al.  DRAFT: DRAFT: DRAFT:DRAFT:DRAFT , 1998 .

[6]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[7]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[8]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[9]  H. Bass THE IHARA-SELBERG ZETA FUNCTION OF A TREE LATTICE , 1992 .

[10]  Mike Krebs,et al.  Expander Families and Cayley Graphs: A Beginner's Guide , 2011 .

[11]  Nathan Linial,et al.  Word maps and spectra of random graph lifts , 2010, Random Struct. Algorithms.

[12]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[13]  Nathan Linial,et al.  Random Graph Coverings I: General Theory and Graph Connectivity , 2002, Comb..

[14]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[15]  J. Friedman Sheaves on Graphs and Their Homological Invariants , 2011, 1104.2665.

[16]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[17]  Joel Friedman,et al.  Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture , 2011, 1105.0129.

[18]  A. Terras,et al.  Zeta Functions of Finite Graphs and Coverings , 1996 .

[19]  T. Sunada,et al.  Zeta Functions of Finite Graphs , 2000 .

[20]  Noga Alon,et al.  Eigenvalues, Expanders and Superconcentrators (Extended Abstract) , 1984, FOCS.

[21]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[22]  Martin Kassabov,et al.  Symmetric groups and expander graphs , 2005 .

[23]  T. Tao,et al.  Random matrices: The Universality phenomenon for Wigner ensembles , 2012, 1202.0068.

[24]  Y. Ihara On discrete subgroups of the two by two projective linear group over p-adic fields , 1966 .

[25]  A. Nilli On the second eigenvalue of a graph , 1991 .

[26]  K. Hashimoto Zeta functions of finite graphs and representations of p-adic groups , 1989 .

[27]  John R. Stallings,et al.  Topology of finite graphs , 1983 .