Effect of barley coffee on the adhesive properties of oral streptococci.

Some beverages and foods protect tooth surfaces against Streptococcus mutans colonization. Adhesion of S. mutans is a crucial step in the initiation and development of dental caries. In this study, we showed that barley coffee (BC), a beverage made from roasted barley, interferes with S. mutans adsorption to hydroxyapatite (HA), and we identified its antiadhesive components. The effects of sublethal concentrations (sub-MICs) of BC on the adhesion of S. mutans to saliva-coated HA beads were assessed using three experimental approaches: (A) Beads were pretreated with BC before adding bacteria, (B) BC and bacteria were added to the beads simultaneously, and (C) streptococci grown in the presence of sub-MICs of BC were added to the beads. All treatments induced variable but significant inhibition of S. mutans sucrose-dependent and -independent adherence to HA. Similar results were obtained with other oral streptococci. BC components were fractioned by dialysis and gel filtration chromatography; the <1000 Da molecular mass (MM) fraction, which contains polyphenols, zinc, and fluoride ions, and the >1000 kDa MM fraction, which consists of a potent brown antioxidant, melanoidin, both displayed antiadhesive properties. High-MM melanoidin was not detected in unroasted barley, indicating that it forms during the roasting process. Results suggest that BC consumption may influence the colonization of tooth surfaces by cariogenic bacteria.