Two finite element approaches for Darcy and Darcy–Brinkman flow through deformable porous media—Mixed method vs. NURBS based (isogeometric) continuity

Abstract Porous media problems with coupled finite deformations and flow are still quite challenging. If large deformations occur, a non homogeneous porosity field is almost inevitable, as the porosity can vary due to deformation or due to flow and pore pressure. From a numerical point of view this significantly changes the mathematical description of the problem. In this contribution, we will analyze the consequences of the occurrence of porosity gradients on the finite element formulations of saturated, two phase porous media for Darcy and Darcy–Brinkman flow. We will present two approaches which are capable of fulfilling the numerical requirements for convergence. The first will be an approach based on NURBS shape functions. The second is a mixed formulation including the porosity as primary solution field. In addition, we will propose a method to include no-penetration or no-slip constraints into the monolithic system using a dual Lagrange multiplier method. The potential of the proposed methods for solving porous flow structure interaction undergoing large deformations will be illustrated by numerical examples.

[1]  Wolfgang A. Wall,et al.  Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation , 2011 .

[2]  D. Z. Turner,et al.  A stabilized mixed finite element method for Darcy flow based on a multiscale decomposition of the solution , 2006 .

[3]  Stephen Whitaker,et al.  The transport equations for multi-phase systems , 1973 .

[4]  Olaf Kolditz,et al.  Numerical simulation of two-phase flow in deformable porous media: Application to carbon dioxide storage in the subsurface , 2012, Math. Comput. Simul..

[5]  Thomas J. R. Hughes,et al.  A stabilized mixed finite element method for Darcy flow , 2002 .

[6]  Barbara I. Wohlmuth,et al.  Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact , 2012, SIAM J. Sci. Comput..

[7]  Wolfgang A. Wall,et al.  A general approach for modeling interacting flow through porous media under finite deformations , 2015 .

[8]  Muhammad Sahimi,et al.  Flow and Transport in Porous Media and Fractured Rock - Toc , 2016 .

[9]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[10]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[11]  Hongtan Liu,et al.  A two-phase flow and transport model for the cathode of PEM fuel cells , 2002 .

[12]  Y. Masson,et al.  On the correlation between material structure and seismic attenuation anisotropy in porous media , 2014 .

[13]  Santiago Badia,et al.  Stabilized continuous and discontinuous Galerkin techniques for Darcy flow. , 2010 .

[14]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[15]  U. Hornung Homogenization and porous media , 1996 .

[16]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[17]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[18]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[19]  Olivier Coussy,et al.  Mechanics of porous continua , 1995 .

[20]  Cv Clemens Verhoosel,et al.  Isogeometric finite element analysis of poroelasticity , 2013 .

[21]  Wanda Strychalski,et al.  A poroelastic immersed boundary method with applications to cell biology , 2015, J. Comput. Phys..

[22]  G. Hofstetter,et al.  A cap model for soils featuring a smooth transition from partially to fully saturated state , 2013 .

[23]  Mohammad R. K. Mofrad,et al.  Rheology of the Cytoskeleton , 2009 .

[24]  Tor Arne Johansen,et al.  The acoustic signature of fluid flow in complex porous media , 2003 .

[25]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[26]  Mauro Ferrari,et al.  Three phase flow dynamics in tumor growth , 2014 .

[27]  R. Spilker,et al.  Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues , 1998 .

[28]  Bernhard A. Schrefler,et al.  The Finite Element Method in the Deformation and Consolidation of Porous Media , 1987 .

[29]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[30]  Alain Sellier,et al.  Numerical analysis of frost effects in porous media. Benefits and limits of the finite element poroelasticity formulation , 2012 .

[31]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[32]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[33]  Janez Levec,et al.  Flow through packed bed reactors: 1. Single-phase flow , 2005 .

[34]  Laurent Orgéas,et al.  Upscaling Forchheimer law , 2007 .

[35]  Dominique Chapelle,et al.  General coupling of porous flows and hyperelastic formulations -- From thermodynamics principles to energy balance and compatible time schemes , 2010 .

[36]  Barbara Wohlmuth,et al.  Isogeometric mortar methods , 2014, 1407.8313.

[37]  Bernhard A. Schrefler,et al.  Coupled heat, water and gas flow in deformable porous media , 1995 .

[38]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[39]  Matthias Mayr,et al.  A Temporal Consistent Monolithic Approach to Fluid-Structure Interaction Enabling Single Field Predictors , 2015, SIAM J. Sci. Comput..

[40]  Annalisa Quaini,et al.  Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..

[41]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[42]  Leszek Demkowicz,et al.  Solution of coupled poroelastic/acoustic/elastic wave propagation problems using automatic hp-adaptivity , 2014 .

[43]  William G. Gray,et al.  Thermodynamic approach to effective stress in partially saturated porous media , 2001 .

[44]  William G. Gray,et al.  A generalization of averaging theorems for porous medium analysis , 2013 .

[45]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..