On Extended Representable Uninorms and Their Extended Fuzzy Implications (Coimplications)

In this work, by Zadeh’s extension principle, we extend representable uninorms and their fuzzy implications (coimplications) to type-2 fuzzy sets. Emphatically, we investigate in which algebras of fuzzy truth values the extended operations are type-2 uninorms and type-2 fuzzy implications (coimplications), respectively.

[1]  Oscar Castillo,et al.  A review on interval type-2 fuzzy logic applications in intelligent control , 2014, Inf. Sci..

[2]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[3]  József Dombi,et al.  Type-2 implications on non-interactive fuzzy truth values , 2008, Fuzzy Sets Syst..

[4]  Maghsoud Amiri,et al.  Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets , 2014, The International Journal of Advanced Manufacturing Technology.

[5]  Bernard De Baets Coimplicators, the forgotten connectives. , 1997 .

[6]  James A. Rodger,et al.  Triple bottom line accounting for optimizing natural gas sustainability: A statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications technology , 2017 .

[7]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[8]  Elbert A. Walker,et al.  The algebra of fuzzy truth values , 2005, Fuzzy Sets Syst..

[9]  Milos Manic,et al.  Uncertainty-Robust Design of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot , 2011, IEEE Transactions on Industrial Informatics.

[10]  Bao Qing Hu,et al.  Generalized extended fuzzy implications , 2015, Fuzzy Sets Syst..

[11]  Susana Cubillo,et al.  Negations on type-2 fuzzy sets , 2014, Fuzzy Sets Syst..

[12]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[13]  H. Zhou,et al.  A Method for Deriving the Analytical Structure of a Broad Class of Typical Interval Type-2 Mamdani Fuzzy Controllers , 2013, IEEE Transactions on Fuzzy Systems.

[14]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[15]  Janusz T. Starczewski Extended triangular norms , 2009, Inf. Sci..

[16]  József Dombi,et al.  Exact calculations of extended logical operations on fuzzy truth values , 2008, Fuzzy Sets Syst..

[17]  Shyi-Ming Chen,et al.  Fuzzy decision making systems based on interval type-2 fuzzy sets , 2013, Inf. Sci..

[18]  Susana Cubillo,et al.  Aggregation operators on type-2 fuzzy sets , 2017, Fuzzy Sets Syst..

[19]  Elbert A. Walker,et al.  Type-2 operations on finite chains , 2014, Fuzzy Sets Syst..

[20]  Jurgita Antucheviciene,et al.  A New Method of Assessment Based on Fuzzy Ranking and Aggregated Weights (AFRAW) for MCDM Problems Under Type-2 Fuzzy Environment , 2016 .

[21]  Ting-Yu Chen,et al.  An ELECTRE-based outranking method for multiple criteria group decision making using interval type-2 fuzzy sets , 2014, Inf. Sci..

[22]  Luigi Fortuna,et al.  Complex dynamics through fuzzy chains , 2004, IEEE Transactions on Fuzzy Systems.

[23]  Edmundas Kazimieras Zavadskas,et al.  Multi-Criteria Project Selection Using an Extended VIKOR Method with Interval Type-2 Fuzzy Sets , 2015, Int. J. Inf. Technol. Decis. Mak..

[24]  Tamalika Chaira,et al.  An improved medical image enhancement scheme using Type II fuzzy set , 2014, Appl. Soft Comput..

[25]  Chia-Feng Juang,et al.  A Type-2 Self-Organizing Neural Fuzzy System and Its FPGA Implementation , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Amir Rezaei,et al.  An interval-valued fuzzy controller for complex dynamical systems with application to a 3-PSP parallel robot , 2014, Fuzzy Sets Syst..

[27]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[28]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[29]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[30]  Bao Qing Hu,et al.  On type-2 fuzzy sets and their t-norm operations , 2014, Inf. Sci..

[31]  Bernard De Baets,et al.  Residual operators of uninorms , 1999, Soft Comput..

[32]  Alev Taskin Gumus,et al.  An outranking approach based on interval type-2 fuzzy sets to evaluate preparedness and response ability of non-governmental humanitarian relief organizations , 2016, Comput. Ind. Eng..

[33]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[34]  Shi-kai Hu,et al.  The structure of continuous uni-norms , 2001, Fuzzy Sets Syst..

[35]  E. Walker,et al.  Sets With Type-2 Operations , 2006, NAFIPS 2006.

[36]  Didier Dubois,et al.  Operations in a Fuzzy-Valued Logic , 1979, Inf. Control..

[37]  Zdenko Takác,et al.  Aggregation of fuzzy truth values , 2014, Inf. Sci..

[38]  Joan Torrens,et al.  On locally internal monotonic operations , 2003, Fuzzy Sets Syst..

[39]  Bernard De Baets,et al.  Idempotent uninorms , 1999, Eur. J. Oper. Res..