Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops

Abstract This paper offers a review on different experiences that have been conducted in South America, which are of interest for the agricultural use of the brine reject originated in inland desalination plants. The results obtained by a combined production scheme that uses brine reject from inland desalination plants for fish farming and for the irrigation of halophyte forage shrubs are summarized. This scheme has succeeded in turning an environmental problem (the brine reject disposal in inland areas) into a source of new economical activities. However, despite a slightly salt removal capacity shown by the halophytes, this production scheme was not able to prevent a progressive salinization of the land irrigated with the reject brine. The yields obtained are analyzed in terms of fish and forage production as well as the weight gain in the livestock fed with the halophytes. Also, due to its characteristics and good performance in arid regions and saline waters, the cultivation of Spirulina cyanobacteria is proposed as an alternative for fish farming within this production scheme. Finally, a series of South American studies addressing the irrigation of crops under saline conditions are reviewed, with the objective of establishing their potential use for reject brine management.

[1]  A. Ben‐Amotz,et al.  Accumulation of metabolites by halotolerant algae and its industrial potential. , 1983, Annual review of microbiology.

[2]  M. Qadir,et al.  Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. , 2003, The Science of the total environment.

[3]  Kiyomi Morino,et al.  Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district , 2009 .

[4]  Walid H. Shayya,et al.  Brine disposal from reverse osmosis desalination plants in Oman and the United Arab Emirates , 2001 .

[5]  N. Ferro,et al.  Soil sodicity as a result of periodical drought , 2010 .

[6]  A. Tambiev,et al.  Manifestation of salt tolerance of Spirulina platensis and Spirulina maxima cyanobacteria of the genus Arthrospira (Spirulina) , 2011, Moscow University Biological Sciences Bulletin.

[7]  Walid H. Shayya,et al.  Use of evaporation ponds for brine disposal in desalination plants , 2000 .

[8]  Dennis L. Corwin,et al.  Evaluation of soil salinity leaching requirement guidelines , 2011 .

[9]  J. F. Medeiros,et al.  IRRIGAÇÃO COM ÁGUA SALINA NO CRESCIMENTO INICIAL DE TRÊS CULTIVARES DE ALGODÃO , 2008 .

[10]  Diego Téllez,et al.  Evaluation of technologies for a desalination operation and disposal in the Tularosa Basin, New Mexico , 2009 .

[11]  H. Gheyi,et al.  Growth and flowering of sunflower under saline stress and nitrogen fertilization , 2010 .

[12]  Yoram Cohen,et al.  Process evaluation of intermediate chemical demineralization for water recovery enhancement in production-scale brackish water desalting , 2011 .

[13]  E. Custodio,et al.  Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal , 2008 .

[14]  L. Cavalcante,et al.  Saline water and liquid bovine manure in seedlings formation of guava cultivar Paluma , 2010 .

[15]  Anthropogenic salinisation of inland waters , 2001 .

[16]  A. A. Siyal,et al.  Salt Affected Soils Their Identification and Reclamation , 2002 .

[17]  Mushtaque Ahmed,et al.  Feasibility of salt production from inland RO desalination plant reject brine: A case study , 2003 .

[18]  E. Taleisnik,et al.  Leñosas perennes para ambientes afectados por salinidad. Una sinopsis de la contribución argentina a este tema , 2011 .

[19]  M. Brito,et al.  Produção de mudas de mamoeiro irrigadas com água salina , 2013 .

[20]  Enrico Drioli,et al.  Membrane distillation-crystallization of seawater reverse osmosis brines , 2010 .

[21]  Marek Gryta,et al.  CONCENTRATION OF NaCl SOLUTION BY MEMBRANE DISTILLATION INTEGRATED WITH CRYSTALLIZATION , 2002 .

[22]  S. G. Nelson,et al.  Water consumption, irrigation efficiency and nutritional value of Atriplex lentiformis grown on reverse osmosis brine in a desert irrigation district , 2011 .

[23]  Munjed A. Maraqa,et al.  Impact of land disposal of reject brine from desalination plants on soil and groundwater , 2005 .

[24]  H. Norman,et al.  Potential use of oldman saltbush (Atriplex nummularia Lindl.) in sheep and goat feeding , 2010 .

[25]  E. R. Porto,et al.  Rendimento da Atriplex nummularia irrigada com efluentes da criação de tilápia em rejeito da dessalinização de água , 2006 .

[26]  Roy A. Davis,et al.  Deep well injection of brine from Paradox Valley, Colorado: Potential major precipitation problems remediated by nanofiltration , 1997 .

[27]  H. Okamura,et al.  Interactive toxic effect and distribution of heavy metals in phytoplankton , 1994 .

[28]  Ricardo de Araújo Kalid,et al.  Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil , 2013 .

[29]  C. F. Schutte,et al.  Desalination of calcium sulphate scaling mine water : Design and operation of the SPARRO process , 1996 .

[30]  Abel Riaza,et al.  Comparative study of brine management technologies for desalination plants , 2014 .

[31]  J. Dutta,et al.  Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water , 2015 .

[32]  C. Silva,et al.  Salinidade, sodicidade e propriedades microbiológicas de Argissolo cultivado com erva-sal e irrigado com rejeito salino , 2008 .

[33]  Thomas Mayer,et al.  Inland Desalination: Challenges and Research Needs , 2009 .

[34]  Joseph G. Jacangelo,et al.  Treatment technologies for reverse osmosis concentrate volume minimization: A review , 2014 .

[35]  J. C. van Dijk,et al.  Zero liquid discharge: Heading for 99% recovery in nanofiltration and reverse osmosis , 2009 .

[36]  Kenneth Maxwell,et al.  The Discovery and Conquest of Mexico, 1517-1521 , 1956 .

[37]  G Lettinga,et al.  Biological sulphate reduction using gas‐lift reactors fed with hydrogen and carbon dioxide as energy and carbon source , 1994, Biotechnology and bioengineering.

[38]  S. Shukla,et al.  Utilization of inland saline water for Spirulina cultivation , 2013 .

[39]  G. Czapowski,et al.  Generation of primary sylvite: the fluid inclusion data from the Upper Permian (Zechstein) evaporites, SW Poland , 2007 .

[40]  Vandré Barbosa Brião,et al.  Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil , 2014 .

[41]  Ali Altaee,et al.  High recovery rate NF–FO–RO hybrid system for inland brackish water treatment , 2015 .

[42]  E. Maas,et al.  CROP SALT TOLERANCE–CURRENT ASSESSMENT , 1977 .

[43]  K. Snowball,et al.  Calcium requirements of plants , 1969 .

[44]  Jean-Philippe Nicot,et al.  Disposal of brackish water concentrate into depleted oil and gas fields: a texas study , 2005 .

[45]  Pei Xu,et al.  Chapter 10 Concentrate Treatment for Inland Desalting , 2010 .

[46]  M. M. Rolim,et al.  Produção de rúcula em sistema hidropônico NFT utilizando água salina do Semiárido - PE e rejeito de dessalinizador , 2011 .

[47]  Albert Muniz,et al.  Disposal of concentrate from brackish water desalting plants by use of deep injection wells , 1990 .

[48]  David L. Carter,et al.  Saline and sodic soils. Principles-dynamics-modeling. , 1982 .

[49]  Anju Dahiya Algae biomass cultivation for advanced biofuel production , 2020, Bioenergy.

[50]  Plano Nacional de Recursos Hídricos: prioridades 2012-2015 , 2011 .

[51]  Robert F. Martin,et al.  Reject Brines from Desalination as Possible Sources for Environmental Technologies , 2011 .

[52]  Jamile Mota da Costa,et al.  UTILIZAÇÃO DE Spirulina platensis COMO SUPLEMENTO ALIMENTAR DURANTE A REVERSÃO SEXUAL DE TILÁPIA DO NILO , 2010 .

[53]  M. Pedersen,et al.  Outdoor pond cultivation of the subtropical marine red algaGracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control , 1993, Journal of Applied Phycology.

[54]  M. M. Rolim,et al.  Produção de rúcula em sistema hidropônico NFT utilizando água salina do Semiárido - PE e rejeito de dessalinizador - DOI:10.5039/agraria.v6i1a929 , 2011 .

[55]  F. Risacher,et al.  Origin of Salts and Brine Evolution of Bolivian and Chilean Salars , 2009 .

[56]  T. M. Soares,et al.  Produção de girassol ornamental com uso de águas salobras em sistema hidropônico NFT , 2012 .

[57]  Nathan T. Hancock,et al.  Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines , 2013 .

[58]  Yoram Cohen,et al.  High-recovery reverse osmosis desalination using intermediate chemical demineralization , 2007 .

[59]  J. Lora,et al.  Concentration of brines from RO desalination plants by natural evaporation , 2005 .

[60]  Hugo Alejandro Flores,et al.  Evaluating the use of Atriplex nummularia Hay on Feed Intake, Growth, and Carcass Characteristics of Creole Kids , 2012 .

[61]  O. R. Estévez,et al.  Simulation of the economic feasibility of fodder shrub plantations as a supplement for goat production in the north-eastern plain of Mendoza, Argentina , 2003 .

[62]  M. M. Unanian,et al.  Abscesses and caseous lymphadenitis in goats in tropical semi-arid north-east Brazil , 1985, Tropical Animal Health and Production.

[63]  Lisa V. Block,et al.  Deep-Injection and Closely Monitored Induced Seismicity at Paradox Valley, Colorado , 2005 .

[64]  F. Soares,et al.  Produção de aquênio do girassol irrigado com água salobra , 2011 .

[65]  A. Montenegro,et al.  Hydroponic lettuce production with brackish groundwater and desalination waste in Ibimirim, PE, Brazil , 2010 .

[66]  R. J. Haynes,et al.  Effects of irrigation-induced salinity and sodicity on soil microbial activity , 2003 .

[67]  C. H. Fernando,et al.  Fisheries in Semi‐Arid Northeast Brazil with Special Reference to the Role of Tilapias , 1994 .

[68]  N. S. Dias,et al.  Produção de tomate hidropônico utilizando rejeito da dessalinização na solução nutritiva aplicados em diferentes épocas , 2011 .

[69]  Li Li,et al.  High performance hydrophilic pervaporation composite membranes for water desalination , 2014 .

[70]  Rick Bond,et al.  Chapter 11 Inland Desalination: Current Practices, Environmental Implications, and Case Studies in Las Vegas, NV , 2010 .

[71]  A. Mohammad,et al.  Nanofiltration membranes review: Recent advances and future prospects , 2015 .

[72]  E. Glenn,et al.  Growth, water use and salt uptake of four halophytes irrigated with highly saline water , 1996 .

[73]  T. M. Soares,et al.  Estratégias de uso de água salobra na produção de alface em hidroponia NFT , 2011 .

[74]  R. Stickney Tilapia Tolerance of Saline Waters: A Review , 1986 .

[75]  Wenxuan Hu,et al.  The accumulation of potash in a continental basin: The example of the Qarhan Saline Lake, Qaidam Basin, West China , 2001 .

[76]  F. Casierra–Posada,et al.  Tolerance of pineapple guava plants (Acca sellowiana [Berg] Burret) to NaCl salinity , 2006 .

[77]  How Yong Ng,et al.  Concentration of brine by forward osmosis: Performance and influence of membrane structure , 2008 .

[78]  Vishwanath H. Dalvi,et al.  Analysis of saline water desalination by directed solvent extraction using octanoic acid , 2015 .

[79]  T. M. Soares,et al.  Produção de alface em NFT e Floating aproveitando água salobra e o rejeito da dessalinização , 2011 .

[80]  G. Mauguin,et al.  Concentrate and other waste disposals from SWRO plants: characterization and reduction of their environmental impact , 2005 .

[81]  Jack Gilron,et al.  WAIV — wind aided intensified evaporation for reduction of desalination brine volume , 2003 .

[82]  Yoram Cohen,et al.  Accelerated desupersaturation of reverse osmosis concentrate by chemically-enhanced seeded precipitation. , 2010 .