A GEOMETRIC APPROACH TO THE KRONECKER PROBLEM II: INVARIANTS OF MATRICES FOR SIMULTANEOUS LEFT-RIGHT ACTIONS
暂无分享,去创建一个
[1] Jan Draisma,et al. The Hilbert Null-cone on Tuples of Matrices and Bilinear Forms , 2006 .
[2] Moritz Beckmann,et al. Young tableaux , 2007 .
[3] P. Newstead. Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .
[4] Claudio Procesi,et al. The invariant theory of n × n matrices , 1976 .
[5] R. Wilson. The classical groups , 2009 .
[6] G. Kempf,et al. Instability in invariant theory , 1978, 1807.02890.
[7] K. V. Subrahmanyam,et al. A geometric approach to the Kronecker problem I: The two row case , 2008 .
[8] Ketan Mulmuley,et al. Geometric Complexity Theory, P vs. NP and Explicit Obstructions , 2003 .
[9] Valeri V.Dolotin. On Invariant Theory , 1995, alg-geom/9512011.
[10] Jeffrey B. Remmel,et al. A formula for the Kronecker products of Schur functions of hook shapes , 1989 .
[11] M. Artin,et al. On azumaya algebras and finite dimensional representations of rings , 1969 .
[12] Stephen Donkin,et al. Invariants of several matrices , 1992 .
[13] Jeffrey B. Remmel,et al. On the Kronecker product of Schur functions of two row shapes , 1994 .
[14] Ketan Mulmuley,et al. Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..
[15] R. Goodman,et al. Representations and Invariants of the Classical Groups , 1998 .