Photosynthetic apparatus of purple bacteria

1. Introduction 2 2. Structure of the bacterial PSU 5 2.1 Organization of the bacterial PSU 5 2.2 The crystal structure of the RC 9 2.3 The crystal structures of LH-II 11 2.4 Bacteriochlorophyll pairs in LH-II and the RC 13 2.5 Models of LH-I and the LH-I-RC complex 15 2.6 Model for the PSU 17 3. Excitation transfer in the PSU 18 3.1 Electronic excitations of BChls 22 3.1.1 Individual BChls 22 3.1.2 Rings of BChls 22 3.1.2.1 Exciton states 22 3.1.3 Effective Hamiltonian 24 3.1.4 Optical properties 25 3.1.5 The effect of disorder 26 3.2 Theory of excitation transfer 29 3.2.1 General theory 29 3.2.2 Mechanisms of excitation transfer 32 3.2.3 Approximation for long-range transfer 34 3.2.4 Transfer to exciton states 35 3.3 Rates for transfer processes in the PSU 37 3.3.1 Car→BChl transfer 37 3.3.1.1 Mechanism of Car→BChl transfer 39 3.3.1.2 Pathways of Car→BChl transfer 40 3.3.2 Efficiency of Car→BChl transfer 40 3.3.3 B800-B850 transfer 44 3.3.4 LH-II→LH-II transfer 44 3.3.5 LH-II→LH-I transfer 45 3.3.6 LH-I→RC transfer 45 3.3.7 Excitation migration in the PSU 46 3.3.8 Genetic basis of PSU assembly 49 4. Concluding remarks 53 5. Acknowledgments 55 6. References 55 Life as we know it today exists largely because of photosynthesis, the process through which light energy is converted into chemical energy by plants, algae, and photosynthetic bacteria (Priestley, 1772; Barnes, 1893; Wurmser, 1925; Van Niel, 1941; Clayton & Sistrom, 1978; Blankenship et al. 1995; Ort & Yocum, 1996). Historically, photosynthetic organisms are grouped into two classes. When photosynthesis is carried out in the presence of air it is called oxygenic photosynthesis (Ort & Yocum, 1996). Otherwise, it is anoxygenic (Blankenship et al. 1995). Higher plants, algae and cyanobacteria perform oxygenic photosynthesis, which involves reduction of carbon dioxide to carbohydrate and oxidation of water to produce molecular oxygen. Some photosynthetic bacteria, such as purple bacteria, carry out anoxygenic photosynthesis that involves oxidation of molecules other than water. In spite of these differences, the general principles of energy transduction are the same in anoxygenic and oxygenic photosynthesis (Van Niel, 1931, 1941; Stanier, 1961; Wraight, 1982; Gest, 1993). The primary processes of photosynthesis involve absorption of photons by light-harvesting complexes (LHs), transfer of excitation energy from LHs to the photosynthetic reaction centers (RCs), and the primary charge separation across the photosynthetic membrane (Sauer, 1975; Knox, 1977; Fleming & van Grondelle, 1994; van Grondelle et al. 1994). In this article, we will focus on the anoxygenic photosynthetic process in purple bacteria, since its photosynthetic system is the most studied and best characterized during the past 50 years.

[1]  J. Smith,et al.  The Dimerization of Chlorophyll a, Chlorophyll b, and Bacteriochlorophyll in Solution1 , 1966 .

[2]  K. Schulten,et al.  Electronic Excitations in Aggregates of Bacteriochlorophylls , 1998 .

[3]  N. Makri,et al.  Short-Range Coherence in the Energy Transfer of Photosynthetic Light-Harvesting Systems , 1999 .

[4]  N. Isaacs,et al.  Structure‐Based Calculations of the Optical Spectra of the LH2 Bacteriochlorophyll‐Protein Complex from Rhodopseudomonas acidophila , 1996 .

[5]  Y. Koyama,et al.  A new singlet-excited state of all-trans-spheroidene as detected by resonance-Raman excitation profiles , 1999 .

[6]  P. Fromme Structure and function of photosystem I. , 1996, Current opinion in structural biology.

[7]  G. Small,et al.  Direct Observation and Hole Burning of the Lowest Exciton Level (B870) of the LH2 Antenna Complex of Rhodopseudomonas acidophila (Strain 10050) , 1997 .

[8]  Joshua Jortner,et al.  Nomenclature of retinoids: recommendations 1981. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). , 1983, Archives of biochemistry and biophysics.

[9]  D. Knaff,et al.  Anoxygenic photosynthetic bacteria , 1996, Photosynthesis Research.

[10]  Graham R. Fleming,et al.  Carotenoid mediated B800–B850 coupling in LH2 , 1999 .

[11]  L. N. M. D. Ysens The discovery of the two photosynthetic systems: a personal account , 1989, Photosynthesis Research.

[12]  A. Borisov,et al.  Excitation energy transfer in photosynthesis , 1973 .

[13]  A. Verméglio,et al.  The Photosynthetic Bacterial Reaction Center II , 1992, Nato ASI Series.

[14]  L. Duysens Transfer of excitation energy in photosynthesis , 1952 .

[15]  I. Barvík,et al.  Simulation of excitonic optical line shapes of cyclic molecular aggregates with 9 and 18 units: influence of quasi-static and dynamic disorder , 1999 .

[16]  H. Frank,et al.  The effects of lithium dodecyl sulfate and sodium borohydride on the absorption spectrum of the B800-850 light-harvesting complex from Rhodopseudomonas acidophila 7750 , 1987 .

[17]  V. Sundström,et al.  Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why , 1996 .

[18]  Laxmikant V. Kale,et al.  Algorithmic Challenges in Computational Molecular Biophysics , 1999 .

[19]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Gregory D. Scholes,et al.  Rate expressions for excitation transfer. III. An ab initio study of electronic factors in excitation transfer and exciton resonance interactions , 1995 .

[21]  D. Knaff Reaction centers of photosynthetic bacteria. , 1988, Trends in biochemical sciences.

[22]  R. Cogdell,et al.  A spectral characterisation of the light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila , 1986 .

[23]  K. Miller Three-dimensional structure of a photosynthetic membrane , 1982, Nature.

[24]  D. Bhaya,et al.  Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. , 1995, Annual review of genetics.

[25]  T. G. Owens,et al.  Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Prince,et al.  The orf162b Sequence ofRhodobacter capsulatus Encodes a Protein Required for Optimal Levels of Photosynthetic Pigment-Protein Complexes , 2000, Journal of bacteriology.

[27]  H. Kohn,et al.  THE CHLOROPHYLL UNIT IN PHOTOSYNTHESIS , 1934, The Journal of general physiology.

[28]  Herbert Zuber,et al.  STRUCTURE AND FUNCTION OF LIGHT‐HARVESTING COMPLEXES AND THEIR POLYPEPTIDES , 1985 .

[29]  A D Cole,et al.  PROCEEDINGS OF THE AMERICAN PHYSICAL SOCIETY. , 1915, Science.

[30]  R. Cogdell,et al.  Purple bacterial antenna complexes. , 1996, Current opinion in structural biology.

[31]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[32]  M. Michel-beyerle Reaction Centers of Photosynthetic Bacteria , 1990 .

[33]  M. Seibert,et al.  Energy transfer dynamics of the B800—B850 antenna complex of Rhodobacter sphaeroides: a hole burning study , 1991 .

[34]  A. V. van Oijen,et al.  Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. II. Exciton states of an elliptically deformed ring aggregate. , 2001, Biophysical journal.

[35]  M. Schiffer,et al.  Structure of Rhodopseudomonas sphaeroides R‐26 reaction center , 1986, FEBS letters.

[36]  Klaus Schulten,et al.  Excitation energy trapping by the reaction center of Rhodobacter Sphaeroides , 2000 .

[37]  R. van Grondelle,et al.  The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Tomas Gillbro,et al.  Energy Transfer and Exciton Annihilation in the B800−850 Antenna Complex of the Photosynthetic Purple Bacterium Rhodopseudomonas acidophila (Strain 10050). A Femtosecond Transient Absorption Study , 1997 .

[39]  R. Clayton The bacterial photosynthetic reaction center. , 1966, Brookhaven symposia in biology.

[40]  Organon Scientific Commission on Biochemical Nomenclature , 1987 .

[41]  Klaus Schulten,et al.  Excitons and excitation transfer in the photosynthetic unit of purple bacteria , 1998 .

[42]  H. Frank Carotenoids in Photosynthetic Bacterial Reaction Centers: Structure, Spectroscopy, and Photochemistry , 1993 .

[43]  V. Novoderezhkin,et al.  Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria. , 1995, Biophysical journal.

[44]  T. Gillbro,et al.  Carotenoid singlet states and their involvement in photosynthetic light-harvesting pigments , 1992 .

[45]  G. Fleming,et al.  Three-Pulse Photon Echo Measurements on LH1 and LH2 Complexes of Rhodobacter sphaeroides: A Nonlinear Spectroscopic Probe of Energy Transfer , 1997 .

[46]  Hideki Hashimoto,et al.  THE 2AG- ENERGY OF CRYSTALLINE ALL-TRANS-SPHEROIDENE AS DETERMINED BY RESONANCE-RAMAN EXCITATION PROFILES , 1998 .

[47]  J. Deisenhofer,et al.  Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria , 1997 .

[48]  K Schulten,et al.  Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. , 1998, Biophysical journal.

[49]  Light-Harvesting and Photoprotection by Carotenoids: Structure-Based Calculations for Photosynthetic Antenna Systems , 1998 .

[50]  V. Sundström,et al.  Characterization of excitation energy trapping in photosynthetic purple bacteria at 77 K , 1989 .

[51]  Stephen M. Prince,et al.  How Photosynthetic Bacteria Harvest Solar Energy , 1999, Journal of bacteriology.

[52]  V. Sundström,et al.  Ultrafast carotenoid band shifts probe structure and dynamics in photosynthetic antenna complexes. , 1998, Biochemistry.

[53]  R. Clayton Primary processes in bacterial photosynthesis. , 1973, Annual Review of Biophysics and Bioengineering.

[54]  H. Hashimoto,et al.  The 1Bu+, 1Bu-, and 2Ag- Energies of Crystalline Lycopene, β-Carotene, and Mini-9-β-carotene as Determined by Resonance-Raman Excitation Profiles: Dependence of the 1Bu- State Energy on the Conjugation Length , 2000 .

[55]  J. Amesz,et al.  Altered organization of light-harvesting complexes in phospholipid-enriched Rhodobacter sphaeroides chromatophores as determined by fluorescence yield and singlet-singlet annihilation measurements , 1998 .

[56]  J. Nugent Oxygenic photosynthesis. Electron transfer in photosystem I and photosystem II. , 1996, European journal of biochemistry.

[57]  D. Shortle,et al.  Directed mutagenesis. , 1981, Annual review of genetics.

[58]  Per A. Bullough,et al.  8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits , 1996 .

[59]  C. N. Hunter,et al.  Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177K, studied by picosecond absorption spectroscopy , 1989, Photosynthesis Research.

[60]  R. Cogdell,et al.  The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila , 1993, Photosynthesis Research.

[61]  Robert Eugene Blankenship Origin and early evolution of photosynthesis , 2004, Photosynthesis Research.

[62]  P. Joliot,et al.  Evidence for supercomplexes between reaction centers, cytochrome c2 and cytochrome bc1 complex in Rhodobacter sphaeroides whole cells , 1989 .

[63]  Yongjian S. Cheng,et al.  Role of the H Protein in Assembly of the Photochemical Reaction Center and Intracytoplasmic Membrane inRhodospirillum rubrum , 2000, Journal of bacteriology.

[64]  Hartmut Michel,et al.  The light-harvesting complex II (B800/850) from Rhodospirillum molischianum is an octamer , 1992 .

[65]  K. Schulten,et al.  Prediction of the Structure of an Integral Membrane Protein: The Light-Harvesting Complex II of Rhodospirillum molischianum , 1996 .

[66]  D. H. Burke,et al.  Structure and Sequence of the Photosynthesis Gene Cluster , 1995 .

[67]  James Barber,et al.  Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution , 1998, Nature.

[68]  Y. Koyama,et al.  The 2Ag− energies of all-trans-neurosporene and spheroidene as determined by fluorescence spectroscopy , 1998 .

[69]  M R Jones,et al.  Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[70]  R. W. Visschers,et al.  Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria. , 1991, Biochemistry.

[71]  J. Dubochet,et al.  The reaction centre of the photounit of Rhodospirillum rubrum is anchored to the light-harvesting complex with four-fold rotational disorder , 1998, Photosynthesis Research.

[72]  H. Zuber,et al.  Structure and Organization of Purple Bacterial Antenna Complexes , 1995 .

[73]  G. Klug Post-Transcriptional Control of Photosynthesis Gene Expression , 1995 .

[74]  K Schulten,et al.  Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae. , 2000, Biophysical journal.

[75]  Petra Fromme,et al.  Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution , 2001, Nature.

[76]  V. Sundström,et al.  Direct observation of the (forbidden) S1 state in carotenoids. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Klaus Schulten,et al.  On the origin of a low-lying forbidden transition in polyenes and related molecules , 1972 .

[78]  Seogjoo J. Jang,et al.  Characterization of the Static Disorder in the B850 Band of LH2 , 2001 .

[79]  J. Kennis,et al.  Exciton Coherence and Energy Transfer in the LH2 Antenna Complex of Rhodopseudomonas acidophila at Low Temperature , 1997 .

[80]  R. G. Alden,et al.  Calculations of Spectroscopic Properties of the LH2 Bacteriochlorophyll−Protein Antenna Complex from Rhodopseudomonas acidophila† , 1997 .

[81]  H. Zuber,et al.  Exciton State and Energy Transfer in Bacterial Membranes: The Role of Pigment-Protein Cyclic Unit Structures , 1985 .

[82]  H. Kramer,et al.  Energy transfer in the B800-850-carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas capsulata , 1982 .

[83]  W. W. Parson,et al.  Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. , 1997, Biochemistry.

[84]  J. Priestley Observations on different kinds of air , 1967 .

[85]  Stephen H. White,et al.  Membrane protein structure: experimental approaches , 1994 .

[86]  J. Knoester,et al.  Optical line shapes of dynamically disordered ring aggregates , 1999 .

[87]  R. Pearlstein Theory of the optical spectra of the bacteriochlorophyll a antenna protein trimer from Prosthecochloris aestuarii , 1992, Photosynthesis Research.

[88]  Martin Gouterman,et al.  Spectra of porphyrins , 1961 .

[89]  H. Michel,et al.  A Comparison of the LH2 Antenna Complex of Three Purple Bacteria by Hole Burning and Absorption Spectroscopes , 1996 .

[90]  Donald R. Ort,et al.  Oxygenic Photosynthesis: The Light Reactions , 1996, Advances in Photosynthesis and Respiration.

[91]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.

[92]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[93]  T. G. Owens,et al.  Femtosecond energy-transfer processes in the B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. , 1991, Biochimica et biophysica acta.

[94]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[95]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[96]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.

[97]  The photosynthetic apparatus of Rhodobacter sphaeroides. , 1999, Trends in microbiology.

[98]  T. Walz,et al.  Two-dimensional crystallization of the light-harvesting I-reaction centre photounit from Rhodospirillum rubrum. , 1997, Journal of molecular biology.

[99]  John E. Johnson,et al.  The use of solid physical models for the study of macromolecular assembly. , 1998, Current opinion in structural biology.

[100]  A. Rutherford The photosynthetic reaction center: Volumes I and II, by J. Deisenhofer and J.R. Norris, Academic Press, San Diego, CA , 1994 .

[101]  W. Kühlbrandt High-Resolution Electron Crystallography of Membrane Proteins , 1994 .

[102]  V. Sundström,et al.  Exciton Delocalization Length in the B850 Antenna of Rhodobacter sphaeroides , 1996 .

[103]  E. Gantt,et al.  Pigment protein complexes and the concept of the photosynthetic unit: Chlorophyll complexes and phycobilisomes , 1996, Photosynthesis Research.

[104]  J. Barber,et al.  Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. , 2000, The Journal of biological chemistry.

[105]  H. Stiel,et al.  One- and two-exciton bands in the LH2 antenna of Rhodopseudomonas acidophila , 1997 .

[106]  M. A. Bopp,et al.  Fluorescence and photobleaching dynamics of single light-harvesting complexes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[107]  B. Hudson,et al.  A low-lying weak transition in the polyene α,ω-diphenyloctatetraene , 1972 .

[108]  G. Fritzsch,et al.  Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. , 1994, Structure.

[109]  K. Schulten,et al.  Kinetics of Excitation Migration and Trapping in the Photosynthetic Unit of Purple Bacteria , 2001 .

[110]  K. Schulten,et al.  General random matrix approach to account for the effect of static disorder on the spectral properties of light harvesting systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  P. Tavan,et al.  Electronic excitations in finite and infinite polyenes. , 1987, Physical review. B, Condensed matter.

[112]  Klaus Schulten,et al.  How Nature Harvests Sunlight , 1997 .

[113]  T. Inaba,et al.  Mechanism of the Carotenoid-to-Bacteriochlorophyll Energy Transfer via the S1 State in the LH2 Complexes from Purple Bacteria , 2000 .

[114]  G. Small,et al.  B896 and B870 components of the Rhodobacter sphaeroides antenna: a hole burning study , 1992 .

[115]  C. Whittingham,et al.  Photosynthesis , 1941, Nature.

[116]  Graham R. Fleming,et al.  On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer , 2000 .

[117]  H. Stiel,et al.  Size Enhancement of Transition Dipoles to One- and Two-Exciton Bands in a Photosynthetic Antenna. , 1996, Physical review letters.

[118]  H. Zuber,et al.  Structure of light-harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae , 1986 .

[119]  H. Michel,et al.  The Structures of Photosynthetic Reaction Centers from Purple Bacteria as Revealed by X-Ray Crystallography , 1995 .

[120]  G. Fleming,et al.  Primary steps of photosynthesis , 1994 .

[121]  P. Bullough,et al.  The 8.5 A projection map of the light‐harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. , 1995, The EMBO journal.

[122]  N. Isaacs,et al.  The purple bacterial photosynthetic unit , 1996, Photosynthesis Research.

[123]  C. Bauer,et al.  Control of photosystem genes in Rhodobacter capsulatus. , 1993, Trends in genetics : TIG.

[124]  A. Freiberg Coupling of Antennas to Reaction Centers , 1995 .

[125]  G. P. Moss Nomenclature of tetrapyrroles (Recommendations 1986) , 1987 .

[126]  J. Beatty,et al.  Topological Model of the Rhodobacter capsulatusLight-Harvesting Complex I Assembly Protein LhaA (Previously Known as ORF1696) , 1998, Journal of bacteriology.

[127]  Walz,et al.  Electron Crystallography of Two-Dimensional Crystals of Membrane Proteins. , 1998, Journal of structural biology.

[128]  H. Michel,et al.  Unexpected similarities of the B800-850 light-harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting complexes from other purple photosynthetic bacteria. , 1993, Biochemistry.

[129]  G. E. Leroi,et al.  ON THE ROLE OF FORBIDDEN LOW‐LYING EXCITED STATES OF LIGHT‐HARVESTING CAROTENOIDS IN ENERGY TRANSFER IN PHOTOSYNTHESIS * , 1979 .

[130]  J. Deisenhofer,et al.  High-resolution structures of photosynthetic reaction centers. , 1991, Annual review of biophysics and biophysical chemistry.

[131]  N. Woodbury,et al.  The Pathway, Kinetics and Thermodynamics of Electron Transfer in Wild Type and Mutant Reaction Centers of Purple Nonsulfur Bacteria , 1995 .

[132]  N. Isaacs,et al.  A model for the photosynthetic apparatus of purple bacteria , 1996 .

[133]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[134]  N. Pfennig Photosynthetic bacteria. , 1967, Annual review of microbiology.

[135]  Klaus Schulten,et al.  Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria , 1997 .

[136]  T O Yeates,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[137]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[138]  R. Monshouwer,et al.  Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems , 1997 .

[139]  G. Fleming,et al.  Electronic Interactions in Photosynthetic Light-Harvesting Complexes: The Role of Carotenoids , 1997 .

[140]  D. Oesterhelt,et al.  A Rhodobacter sphaeroides puf L, M and X deletion mutant and its complementation in trans with a 5.3 kb puf operon shuttle fragment , 1989, The EMBO journal.

[141]  G. Fleming,et al.  Femtosecond spectroscopy of photosynthetic light-harvesting systems. , 1997, Current opinion in structural biology.

[142]  W. Baumeister,et al.  Stoichiometric model of the photosynthetic unit of Ectothiorhodospira halochloris. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[143]  V. Sundström,et al.  Kinetics of Excitation Transfer and Trapping in Purple Bacteria , 1995 .

[144]  N. Isaacs,et al.  The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. , 2001, Biochemistry.

[145]  L. Germeroth,et al.  Structure of the light harvesting antenna from Rhodospirillum molischianum studied by electron microscopy , 1994 .

[146]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[147]  C. Francke,et al.  The size of the photosynthetic unit in purple bacteria , 1995, Photosynthesis Research.

[148]  V. Sundström,et al.  Excitons in Photosynthetic Purple Bacteria: Wavelike Motion or Incoherent Hopping? , 1997 .

[149]  Benoît Roux,et al.  Biological membranes : a molecular perspective from computation and experiment , 1996 .

[150]  W. R. Sistrom,et al.  CONTROL OF SYNTHESIS OF REACTION CENTER BACTERIOCHLOROPHYLL IN PHOTOSYNTHETIC BACTERIA , 1972, Photochemistry and photobiology.

[151]  A. Frenkel LIGHT INDUCED PHOSPHORYLATION BY CELL-FREE PREPARATIONS OF PHOTOSYNTHETIC BACTERIA1 , 1954 .

[152]  A. Einstein Zur Quantentheorie der Strahlung , 1916 .

[153]  C. R. Barnes On the Food of Green Plants , 1893, Botanical Gazette.

[154]  R. W. Visschers,et al.  Low-temperature fluorescence and absorption spectroscopy of reaction center/antenna complexes from Ectothiorhodospira mobilis, Rhodopseudomonas palustris and Rhodobacter sphaeroides , 1992 .

[155]  R. Monshouwer,et al.  Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis. , 1999, Biophysical journal.

[156]  K. Sauer Primary events and the trapping of energy , 1975 .

[157]  J. Barber,et al.  University of Groningen Structure and membrane organization of photosystem II in green plants , 2006 .

[158]  K Schulten,et al.  Predicting the structure of the light‐harvesting complex II of rhodospirillum molischianum , 1995, Protein science : a publication of the Protein Society.

[159]  R. Cogdell,et al.  Pigment‐protein complexes of purple photosynthetic bacteria: An overview , 1983, Journal of cellular biochemistry.

[160]  H. Stiel,et al.  Pigment–protein architecture in the light‐harvesting antenna complexes of purple bacteria: does the crystal structure reflect the native pigment–protein arrangement? , 2000, FEBS letters.

[161]  S. Kaplan,et al.  Photosynthetic Membrane Structure and Function , 1982 .

[162]  R. Clayton,et al.  Isolation of a reaction center fraction from Rhodopseudomonas spheroides. , 1968, Biochemical and biophysical research communications.

[163]  A. Verméglio,et al.  Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides , 1999, The EMBO journal.

[164]  W. R. Sistrom,et al.  The photosynthetic bacteria , 1978 .

[165]  E. Wehrli,et al.  The structure of the photoreceptor unit of Rhodopseudomonas viridis , 1984, The EMBO journal.

[166]  G. Small,et al.  Symmetry-Based Analysis of the Effects of Random Energy Disorder on the Excitonic Level Structure of Cyclic Arrays: Application to Photosynthetic Antenna Complexes , 1998 .

[167]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[168]  E. Smith SOLUTIONS OF CHLOROPHYLL-PROTEIN COMPOUNDS (PHYLLOCHLORINS) EXTRACTED FROM SPINACH. , 1938, Science.

[169]  David J. Gosztola,et al.  Effect of the Solvent Environment on the Spectroscopic Properties and Dynamics of the Lowest Excited States of Carotenoids , 2000 .

[170]  T. G. Monger,et al.  Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus. , 1977, Biochimica et biophysica acta.

[171]  Klaus Schulten,et al.  Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria , 1999 .

[172]  B. S. Neporent,et al.  On The Mechanism of , 1975 .

[173]  F. G. Zhang,et al.  Detrapping of excitation energy from the reaction centre in the photosynthetic purple bacterium Rhodospirillum rubrum , 1993 .

[174]  T. Dracheva,et al.  Exciton delocalization in the antenna of purple bacteria: Exciton spectrum calculations using X‐ray data and experimental site inhomogeneity , 1996, FEBS letters.

[175]  C. Howe,et al.  Molecular Aspects of Light-harvesting Processes in Algae , 1997 .

[176]  Graham R. Fleming,et al.  Electronic Excitation Transfer from Carotenoid to Bacteriochlorophyll in the Purple Bacterium Rhodopseudomonas acidophila , 1998 .

[177]  R. Stanier PHOTOSYNTHETIC MECHANISMS IN BACTERIA AND PLANTS: DEVELOPMENT OF A UNITARY CONCEPT. , 1961, Bacteriological reviews.

[178]  M. Mimuro,et al.  Calculation of the excitation transfer matrix elements between the S2 or S1 state of carotenoid and the S2 or S1 state of bacteriochlorophyll , 1993 .

[179]  T. Walz,et al.  Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. , 1998, Journal of molecular biology.

[180]  I. Gould,et al.  Ab Initio Molecular Orbital Calculations of Electronic Couplings in the LH2 Bacterial Light-Harvesting Complex of Rps. Acidophila , 1999 .

[181]  J. Beatty,et al.  Genetic Complementation and Kinetic Analyses ofRhodobacter capsulatus ORF1696 Mutants Indicate that the ORF1696 Protein Enhances Assembly of the Light-Harvesting I Complex , 1998, Journal of bacteriology.

[182]  T. Masaki Structure and Dynamics , 2002 .

[183]  T. Lilburn,et al.  Directed mutagenesis of the Rhodobacter capsulatus puhA gene and orf 214: pleiotropic effects on photosynthetic reaction center and light-harvesting 1 complexes , 1996, Journal of bacteriology.

[184]  K. Schulten,et al.  Efficient light harvesting through carotenoids , 2004, Photosynthesis Research.

[185]  K. Naqvi,et al.  THE MECHANISM OF SINGLET‐SINGLET EXCITATION ENERGY TRANSFER FROM CAROTENOIDS TO CHLOROPHYLL , 1980 .

[186]  J. .. Bassham Photosynthetic Mechanisms , 1967 .

[187]  G. Montoya,et al.  Two-dimensional structure of light harvesting complex II (LHII) from the purple bacterium Rhodovulum sulfidophilum and comparison with LHII from Rhodopseudomonas acidophila. , 1996, Structure.

[188]  Herman J. M. Kramer,et al.  Pigment organization of the B800–850 antenna complex of Rhodopseudomonas sphaeroides , 1984 .

[189]  K. Diederichs,et al.  Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae , 1996, Science.

[190]  J. Deisenhofer,et al.  The Photosynthetic Reaction Center , 1993 .

[191]  B. Green,et al.  THE CHLOROPHYLL-CAROTENOID PROTEINS OF OXYGENIC PHOTOSYNTHESIS. , 1996, Annual review of plant physiology and plant molecular biology.

[192]  M. Thompson,et al.  A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis , 1991 .

[193]  C. B. V. Niel,et al.  On the morphology and physiology of the purple and green sulphur bacteria , 2004, Archiv für Mikrobiologie.

[194]  M. Michel-beyerle Antennas and Reaction Centers of Photosynthetic Bacteria , 1985 .

[195]  R. van Grondelle,et al.  Photosynthetic antenna proteins: 100 ps before photochemistry starts. , 1989, Trends in biochemical sciences.

[196]  T. Gillbro,et al.  Efficient energy transfer from the carotenoid S(2) state in a photosynthetic light-harvesting complex. , 2001, Biophysical journal.

[197]  T. G. Truscott,et al.  Energy transfer between the carotenoid and the bacteriochlorophyll within the B-800-850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. , 1981, Biochimica et biophysica acta.

[198]  Leonas Valkunas,et al.  NONLINEAR ANNIHILATION OF EXCITONS.: THEORY , 2000 .

[199]  A. V. van Oijen,et al.  Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. I. Experiments and Monte Carlo simulations. , 2001, Biophysical journal.

[200]  G. Cohen-bazire,et al.  Kinetic studies of pigment synthesis by non-sulfur purple bacteria. , 1957, Journal of cellular and comparative physiology.

[201]  V. Sundström,et al.  Energy transfer from carotenoid to bacteriochlorophyll a in the B800–820 antenna complexes from Rhodopseudomonas acidophila strain 7050 , 1988 .

[202]  Y. Fujiyoshi,et al.  Projection map of the reaction center‐light harvesting 1 complex from Rhodopseudomonas viridis at 10 Å resolution , 1998, FEBS letters.

[203]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[204]  H. Zuber,et al.  The light‐harvesting core‐complex and the B820‐subunit from Rhodopseudomonas marina. Part II. Electron microscopic characterisation , 1992, FEBS letters.

[205]  M F Schmid,et al.  Structure and X-ray amino acid sequence of a bacteriochlorophyll A protein from Prosthecochloris aestuarii refined at 1.9 A resolution. , 1986, Journal of molecular biology.

[206]  M. A. Bopp,et al.  The dynamics of structural deformations of immobilized single light-harvesting complexes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[207]  T. Noguchi,et al.  Resonance Raman spectra of 13-demethylretinal bacteriorhodopsin and of a picosecond bathochromic photocycle intermediate , 1990 .

[208]  H. Gest History of concepts of the comparative biochemistry of oxygenic and anoxygenic photosyntheses , 2004, Photosynthesis Research.

[209]  N. L. Greenbaum,et al.  The absolute size of a photosynthetic unit , 1989 .

[210]  G. Fleming,et al.  The Light Harvesting Process in Purple Bacteria , 1999 .