Stability of a coupling technique for partitioned solvers in FSI applications

This paper focuses on the stability of the coupling iterations in the partitioned approach to fluid-structure interaction. Previous research has shown that the number of coupling iterations increases when the time step decreases or when the structure becomes more flexible which is explained here by Fourier error analysis of the unsteady, incompressible flow in an elastic tube. Substituting a linearized model of the structural solver into the flow solver makes the coupling more stable but is impracticable if the flow solver is a black box. Therefore the coupling iterations are stabilized by coupling with reduced-order models and Aitken underrelaxation.

[1]  Hester Bijl,et al.  Two level algorithms for partitioned fluid-structure interaction computations , 2006 .

[2]  Karen Willcox,et al.  Reduced-order aerodynamic models for aeroelastic control of turbomachines , 1999 .

[3]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[4]  Vinod Kumar,et al.  Numerical simulation of soft landing for clusters of cargo parachutes , 2004 .

[5]  van Eh Harald Brummelen,et al.  An interface Newton–Krylov solver for fluid–structure interaction , 2005 .

[6]  Kimmo Berg,et al.  European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) , 2004 .

[7]  Klaus-Jürgen Bathe,et al.  Benchmark problems for incompressible fluid flows with structural interactions , 2007 .

[8]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[9]  Ender A. Finol,et al.  Compliant biomechanics of abdominal aortic aneurysms: A fluid-structure interaction study , 2007 .

[10]  Ekkehard Ramm,et al.  Accelerated iterative substructuring schemes for instationary fluid-structure interaction , 2001 .

[11]  Vincent P. Manno,et al.  Developing numerical techniques for solving low Mach number fluid-acoustic problems , 1993 .

[12]  Ekkehard Ramm,et al.  THE ARTIFICIAL ADDED MASS EFFECT IN SEQUENTIAL STAGGERED FLUID-STRUCTURE INTERACTION ALGORITHMS , 2006 .

[13]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[14]  Jan Vierendeels,et al.  Coupling of a Navier-Stokes solver and an elastic boundary solver for unsteady problems , 1998 .

[15]  Jan Vierendeels,et al.  Implicit coupling of partitioned fluid-structure interaction problems with reduced order models , 2007 .

[16]  Jan Vierendeels,et al.  Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion , 2005 .

[17]  Jeffrey P. Thomas,et al.  Transonic Limit Cycle Oscillation Analysis Using Reduced Order Aerodynamic Models , 2001 .

[18]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[19]  Jean-Frédéric Gerbeau,et al.  Partitioned FSI strategy for simulations of a thin elastic valve , 2006 .

[20]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[21]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[22]  S. Frankel,et al.  Flow over a membrane-covered, fluid-filled cavity. , 2007, Computers & structures.

[23]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[24]  H. Matthies,et al.  Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction , 2002 .

[25]  Jan Vierendeels,et al.  NUMERICAL SIMULATION OF BUBBLE AND DROPLET DYNAMICS USING PARTITIONED SOLVERS , 2006 .

[26]  Jan Vierendeels,et al.  An efficient coupling procedure for flexible wall fluid-structure interaction , 2000 .

[27]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[28]  Oddvar O. Bendiksen,et al.  Structures, Structural Dynamics and Materials Conference , 1998 .

[29]  Ralf Deiterding,et al.  Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations , 2007 .

[30]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[31]  P. Verdonck,et al.  Computer simulation of intraventricular flow and pressure gradients during diastole. , 2000, Journal of biomechanical engineering.