Resistance distance-based graph invariants of subdivisions and triangulations of graphs

We study three resistance distance-based graph invariants: the Kirchhoff index, and two modifications, namely, the multiplicative degree-Kirchhoff index and the additive degree-Kirchhoff index. Recently, one of the present authors (2014) and Sun et?al. (2014) independently obtained (different) formulas for the Kirchhoff index of subdivisions of graphs. Huang et?al. (2014) treated the Kirchhoff index of triangulations of graphs. In our paper, first we derive formulae for the additive degree-Kirchhoff index and the multiplicative degree-Kirchhoff index of subdivisions and triangulations, as well as a new formula for the Kirchhoff index of triangulations, in terms of invariants of G . Then comparisons are made between each of our Kirchhoffian graph invariants for subdivision and triangulation. Finally, formulae for these graph invariants of iterated subdivisions and triangulations of graphs are obtained.

[1]  Xueliang Li,et al.  The (revised) Szeged index and the Wiener index of a nonbipartite graph , 2014, Eur. J. Comb..

[2]  Anna Torriero,et al.  New upper and lower bounds for the additive degree-Kirchhoff index , 2013 .

[3]  Lihua You,et al.  Comment on "Kirchhoff index in line, subdivision and total graphs of a regular graph" , 2013, Discret. Appl. Math..

[4]  K. Das On the Kirchhoff Index of Graphs , 2013 .

[5]  M. Randic,et al.  Resistance distance , 1993 .

[6]  Kinkar Chandra Das,et al.  Comparison between the Wiener index and the Zagreb indices and the eccentric connectivity index for trees , 2014, Discret. Appl. Math..

[7]  F. Spieksma,et al.  Effective graph resistance , 2011 .

[8]  Stephen P. Boyd,et al.  Minimizing Effective Resistance of a Graph , 2008, SIAM Rev..

[9]  Qingying Deng,et al.  On the Kirchhoff index of the complement of a bipartite graph , 2013 .

[10]  Qingying Deng,et al.  On extremal bipartite unicyclic graphs , 2014 .

[11]  Guihai Yu,et al.  Degree resistance distance of unicyclic graphs , 2012 .

[12]  Sandi Klavzar,et al.  Wiener index in weighted graphs via unification of Θ∗Θ∗-classes , 2014, Eur. J. Comb..

[13]  Fuji Zhang,et al.  Resistance distance and the normalized Laplacian spectrum , 2007, Discret. Appl. Math..

[14]  Yeong-Nan Yeh,et al.  On the number of matchings of graphs formed by a graph operation , 2006 .

[15]  Yanfeng Luo,et al.  The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs , 2013, Discret. Appl. Math..

[17]  Anna Torriero,et al.  Bounds for the Kirchhoff index via majorization techniques , 2013, Journal of Mathematical Chemistry.

[18]  Zahra Sepasdar,et al.  On the Kirchhoff and the Wiener Indices of Graphs and Block Decomposition , 2014, Electron. J. Comb..

[19]  G. E. Sharpe Violation of the 2-triple property by resistive networks , 1967 .

[20]  Vladimir Gurvich,et al.  Metric and ultrametric spaces of resistances , 1987 .

[21]  J. Kigami,et al.  Harmonic analysis for resistance forms , 2003 .

[22]  Martin Knor,et al.  Relationship between the edge-Wiener index and the Gutman index of a graph , 2014, Discret. Appl. Math..

[23]  Stephan G. Wagner,et al.  Some new results on distance-based graph invariants , 2009, Eur. J. Comb..

[24]  Roberto Cruz,et al.  Wiener index of Eulerian graphs , 2014, Discret. Appl. Math..

[25]  Yujun Yang The Kirchhoff index of subdivisions of graphs , 2014, Discret. Appl. Math..

[26]  Yeong-Nan Yeh,et al.  The asymptotic behavior of some indices of iterated line graphs of regular graphs , 2012, Discret. Appl. Math..

[27]  Douglas J. Klein,et al.  An infinite family of graphs with a facile count of perfect matchings , 2014, Discret. Appl. Math..

[28]  C. Nash-Williams,et al.  Random walk and electric currents in networks , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Hanyuan Deng,et al.  Degree Kirchhoff Index of Bicyclic Graphs , 2017, Canadian Mathematical Bulletin.

[30]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[31]  Noureddine Chair Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor network, and number theory , 2012 .

[32]  Ali Reza Ashrafi,et al.  NOTE ON DEGREE KIRCHHOFF INDEX OF GRAPHS , 2013 .

[33]  G. E. Sharpe Theorem on resistive networks , 1967 .

[34]  L. Shapiro An Electrical Lemma , 1987 .

[35]  Xing Gao,et al.  Kirchhoff index in line, subdivision and total graphs of a regular graph , 2012, Discret. Appl. Math..

[36]  Douglas J. Klein,et al.  A recursion formula for resistance distances and its applications , 2013, Discret. Appl. Math..

[37]  Haiyan Chen,et al.  Random walks and the effective resistance sum rules , 2010, Discret. Appl. Math..

[38]  George P.H. Styan,et al.  A note-on equicofactor matrices , 1967 .

[39]  Zuhe Zhang,et al.  Some physical and chemical indices of clique-inserted lattices , 2013, 1302.5932.

[40]  José Luis Palacios,et al.  Another look at the degree-Kirchhoff index , 2010 .

[41]  Martin Knor,et al.  Complete solution of equation W(L3(T))=W(T) for the Wiener index of iterated line graphs of trees , 2014, Discret. Appl. Math..

[42]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .

[43]  Mustapha Aouchiche,et al.  On a conjecture about the Szeged index , 2010, Eur. J. Comb..

[44]  Changjiang Bu,et al.  Some results on resistance distances and resistance matrices , 2015 .

[45]  Sandi Klavzar,et al.  Improved bounds on the difference between the Szeged index and the Wiener index of graphs , 2014, Eur. J. Comb..

[46]  G. Sharpe,et al.  On the Solution of Networks by Means of the Equicofactor Matrix , 1960 .