A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs

In this paper, we propose a polynomial-time algorithm for solving the Component-Cardinality-Constrained Critical Node Problem (3C-CNP) on bipartite permutation graphs. This problem, which is a variant of the well-known Critical Node Detection problem, consists in finding the minimal subset of nodes within a graph, the deletion of which results in a set of connected components of at most K nodes each one, where K is a given integer. The proposed algorithm is a dynamic programming scheme of time complexity $$O(nK^2)$$O(nK2), where n is the number of nodes. To provide evidences of algorithm’s efficiency, different experiments have been performed on randomly generated graphs.

[1]  Hamamache Kheddouci,et al.  Least Squares Method for Diffusion Source Localization in Complex Networks , 2016, COMPLEX NETWORKS.

[2]  Salim Hariri,et al.  Identifying the Cyber Attack Origin with Partial Observation: A Linear Regression Based Approach , 2017, 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W).

[3]  Panos M. Pardalos,et al.  Detecting critical nodes in sparse graphs , 2009, Comput. Oper. Res..

[4]  Panos M. Pardalos,et al.  Cardinality-Constrained Critical Node Detection Problem , 2011 .

[5]  Yota Otachi,et al.  Random generation and enumeration of bipartite permutation graphs , 2012, J. Discrete Algorithms.

[6]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[7]  Eduardo L. Pasiliao,et al.  Exact identification of critical nodes in sparse networks via new compact formulations , 2014, Optim. Lett..

[8]  My T. Thai,et al.  Assessing attack vulnerability in networks with uncertainty , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[9]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[10]  P. Pardalos,et al.  MANAGING NETWORK RISK VIA CRITICAL NODE IDENTIFICATION , 2007 .

[11]  Jonathan Cole Smith,et al.  Polynomial‐time algorithms for solving a class of critical node problems on trees and series‐parallel graphs , 2012, Networks.

[12]  Wayne Pullan,et al.  Heuristic identification of critical nodes in sparse real-world graphs , 2015, J. Heuristics.

[13]  Roberto Aringhieri,et al.  A general Evolutionary Framework for different classes of Critical Node Problems , 2016, Eng. Appl. Artif. Intell..

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Eduardo L. Pasiliao,et al.  An integer programming framework for critical elements detection in graphs , 2014, J. Comb. Optim..

[16]  Eduardo L. Pasiliao,et al.  Critical nodes for distance‐based connectivity and related problems in graphs , 2015, Networks.

[17]  Marco Di Summa,et al.  Identifying critical nodes in undirected graphs: Complexity results and polynomial algorithms for the case of bounded treewidth , 2013, Discret. Appl. Math..

[18]  My T. Thai,et al.  Network Under Joint Node and Link Attacks: Vulnerability Assessment Methods and Analysis , 2015, IEEE/ACM Transactions on Networking.

[19]  Taieb Znati,et al.  On Approximation of New Optimization Methods for Assessing Network Vulnerability , 2010, 2010 Proceedings IEEE INFOCOM.

[20]  Egon Balas,et al.  The vertex separator problem: a polyhedral investigation , 2005, Math. Program..

[21]  Jeroen H. G. C. Rutten,et al.  Disconnecting graphs by removing vertices: a polyhedral approach , 2007 .

[22]  Marco Di Summa,et al.  Branch and cut algorithms for detecting critical nodes in undirected graphs , 2012, Computational Optimization and Applications.

[23]  Roberto Aringhieri,et al.  Polynomial and pseudo-polynomial time algorithms for different classes of the Distance Critical Node Problem , 2018, Discret. Appl. Math..

[24]  My T. Thai,et al.  Detecting Critical Nodes in Interdependent Power Networks for Vulnerability Assessment , 2013, IEEE Transactions on Smart Grid.

[25]  Hamamache Kheddouci,et al.  Component-cardinality-constrained critical node problem in graphs , 2016, Discret. Appl. Math..

[26]  My T. Thai,et al.  Precise structural vulnerability assessment via mathematical programming , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[27]  Panos M. Pardalos,et al.  Studying connectivity properties in human protein-protein interaction network in cancer pathway , 2012 .

[28]  Alexander Grigoriev,et al.  Complexity and approximability of the k‐way vertex cut , 2014, Networks.

[29]  Ryuhei Uehara,et al.  Linear structure of bipartite permutation graphs and the longest path problem , 2007, Inf. Process. Lett..

[30]  Mario Ventresca,et al.  Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem , 2012, Comput. Oper. Res..

[31]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[32]  Marco Di Summa,et al.  Complexity of the critical node problem over trees , 2011, Comput. Oper. Res..

[33]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[34]  Roberto Aringhieri,et al.  A preliminary analysis of the Distance Based Critical Node Problem , 2016, Electron. Notes Discret. Math..

[35]  Mario Ventresca,et al.  A randomized algorithm with local search for containment of pandemic disease spread , 2014, Comput. Oper. Res..

[36]  Jonathan Cole Smith,et al.  Exact interdiction models and algorithms for disconnecting networks via node deletions , 2012, Discret. Optim..

[37]  Hamamache Kheddouci,et al.  The Critical Node Detection Problem in networks: A survey , 2018, Comput. Sci. Rev..

[38]  Christian Komusiewicz,et al.  Parameterized complexity of critical node cuts , 2016, Theor. Comput. Sci..