Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly

[1]  Christine M. Gabardo,et al.  Self-Cleaning CO2 Reduction Systems: Unsteady Electrochemical Forcing Enables Stability , 2021, ACS Energy Letters.

[2]  E. Hensen,et al.  Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts , 2020, Nature Catalysis.

[3]  Qinghong Zhang,et al.  Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper , 2020, Nature Catalysis.

[4]  Diego A. Gómez-Gualdrón,et al.  Balancing volumetric and gravimetric uptake in highly porous materials for clean energy , 2020, Science.

[5]  B. Roldan Cuenya,et al.  The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction , 2020, Nature Energy.

[6]  Tao Chen,et al.  Covalent Triazine Framework Confined Copper Catalysts for Selective Electrochemical CO2 Reduction: Operando Diagnosis of Active Sites , 2020 .

[7]  Christine M. Gabardo,et al.  Oxygen-tolerant electroproduction of C2 products from simulated flue gas , 2020 .

[8]  M. Fontecave,et al.  Mechanistic Understanding of CO2 Reduction Reaction (CO2RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts , 2020 .

[9]  Gengfeng Zheng,et al.  Boosting CO2 Electroreduction to CH4 via Tuning Neighboring Single-Copper Sites , 2020 .

[10]  Christine M. Gabardo,et al.  Efficient methane electrosynthesis enabled by tuning local CO2 availability. , 2020, Journal of the American Chemical Society.

[11]  P. Kenis,et al.  Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane , 2020, Journal of Electroanalytical Chemistry.

[12]  P. Kenis,et al.  Durable Cathodes and Electrolyzers for the Efficient Aqueous Electrochemical Reduction of CO2. , 2019, ChemSusChem.

[13]  Christine M. Gabardo,et al.  Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly , 2019, Joule.

[14]  M. Fontecave,et al.  Carbon Nanotube supported Copper Polyphthalocyanine for Efficient and Selective Electrocatalytic CO2 Reduction to CO. , 2019, ChemSusChem.

[15]  V. Babu,et al.  Fundamentals of Engineering Thermodynamics , 2019 .

[16]  Fikile R. Brushett,et al.  Investigating Electrode Flooding in a Flowing Electrolyte, Gas-Fed Carbon Dioxide Electrolyzer. , 2019, ChemSusChem.

[17]  H. Fan,et al.  Selectivity control of CO versus HCOO− production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites , 2019, Nature Catalysis.

[18]  F. Calle‐Vallejo,et al.  Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels , 2019, Nature Energy.

[19]  Danielle A. Salvatore,et al.  Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell , 2019, Science.

[20]  F. Darvas,et al.  Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency , 2019, ACS energy letters.

[21]  Alexis T. Bell,et al.  Towards membrane-electrode assembly systems for CO2 reduction: a modeling study , 2019, Energy & Environmental Science.

[22]  J. Nørskov,et al.  Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. , 2019, Chemical reviews.

[23]  Christine M. Gabardo,et al.  Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design , 2019, Advanced materials.

[24]  Wilson A. Smith,et al.  CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions , 2019, Energy & Environmental Science.

[25]  Paul J. A. Kenis,et al.  Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption , 2019, Nature Energy.

[26]  Chengqin Zou,et al.  Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper , 2019, Nature Catalysis.

[27]  Haotian Wang,et al.  Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst , 2019, Joule.

[28]  Yi-sheng Liu,et al.  Copper adparticle enabled selective electrosynthesis of n-propanol , 2018, Nature Communications.

[29]  Jeremy T. Feaster,et al.  Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst , 2018, Nature Catalysis.

[30]  A. Bell,et al.  Modeling gas-diffusion electrodes for CO2 reduction. , 2018, Physical chemistry chemical physics : PCCP.

[31]  Gengfeng Zheng,et al.  Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4 , 2018, ACS Catalysis.

[32]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[33]  Feng Jiao,et al.  General Techno-Economic Analysis of CO2 Electrolysis Systems , 2018 .

[34]  Ke R. Yang,et al.  Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction , 2018, Nature Communications.

[35]  Hailiang Wang,et al.  Self-Cleaning Catalyst Electrodes for Stabilized CO2 Reduction to Hydrocarbons. , 2017, Angewandte Chemie.

[36]  Feng Jiao,et al.  An Ir-based anode for a practical CO2 electrolyzer , 2017 .

[37]  Michael Grätzel,et al.  Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO , 2017, Nature Energy.

[38]  Zhonglong Zhao,et al.  Generalized Surface Coordination Number as an Activity Descriptor for CO2 Reduction on Cu Surfaces , 2016 .

[39]  Byoungsu Kim,et al.  A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2. , 2016, ChemSusChem.

[40]  Joseph H. Montoya,et al.  Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. , 2015, The journal of physical chemistry letters.

[41]  Thomas F. Jaramillo,et al.  Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. , 2014, Journal of the American Chemical Society.

[42]  Ramon Gonzalez,et al.  Rethinking biological activation of methane and conversion to liquid fuels. , 2014, Nature chemical biology.

[43]  Anil Verma,et al.  Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel , 2013 .

[44]  K. Hodgson,et al.  The X-ray absorption spectroscopic model of the copper(II) imidazole complex ion in liquid aqueous solution: a strongly solvated square pyramid. , 2012, Inorganic chemistry.

[45]  Tom M. L. Wigley,et al.  Coal to gas: the influence of methane leakage , 2011 .

[46]  Á. Rubio,et al.  Copper-phthalocyanine based metal-organic interfaces: the effect of fluorination, the substrate, and its symmetry. , 2010, The Journal of chemical physics.

[47]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[48]  A. Gaur,et al.  Copper K-edge XANES of Cu(I) and Cu(II) oxide mixtures , 2009 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[52]  P. Majewski,et al.  Adsorption of albumin on silica surfaces modified by silver and copper nanoparticles , 2013 .

[53]  S. Arabia,et al.  Structural and Transport Properties of Copper Phthalocyanine (CuPc) Thin Films. , 2002 .