Nonlinear control of feedforward systems with bounded signals

The stabilization problem for a class of nonlinear feedforward systems is solved using bounded control. It is shown that when the lower subsystem of the cascade is input-to-state stable and the upper subsystem not exponentially unstable, global asymptotic stability can be achieved via a simple static feedback having bounded amplitude that requires knowledge of the "upper" part of the state only. This is made possible by invoking the bounded real lemma and a generalization of the small gain theorem. Thus, stabilization is achieved with typical saturation functions, saturations of constant sign, or quantized control. Moreover, the problem of asymptotic stabilization of a stable linear system with bounded outputs is solved by means of dynamic feedback. Finally, a new class of stabilizing control laws for a chain of integrators with input saturation is proposed. Some robustness issues are also addressed and the theory is illustrated with examples on the stabilization of physical systems.

[1]  A. Isidori,et al.  Robust global stabilization of a class of uncertain feedforward nonlinear systems , 2000 .

[2]  Stefano Miani,et al.  Optimal l∞ disturbance attenuation and global stabilization of linear systems with bounded control , 1999 .

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  Alessandro Astolfi,et al.  A remark on the stability of interconnected nonlinear systems , 2004, IEEE Transactions on Automatic Control.

[5]  Romeo Ortega,et al.  Stabilization of nonlinear systems via forwarding mod {LgV} , 2001, IEEE Trans. Autom. Control..

[6]  W. M. Wonham,et al.  Linear Multivariable Control , 1979 .

[7]  A. Teel Global stabilization and restricted tracking for multiple integrators with bounded controls , 1992 .

[8]  L. Praly,et al.  Adding integrations, saturated controls, and stabilization for feedforward systems , 1996, IEEE Trans. Autom. Control..

[9]  Dirk Aeyels,et al.  Stabilization of positive linear systems , 2001, Syst. Control. Lett..

[10]  Zhong-Ping Jiang,et al.  Global output-feedback tracking for a benchmark nonlinear system , 2000, IEEE Trans. Autom. Control..

[11]  D. Bernstein,et al.  Global stabilization of the oscillating eccentric rotor , 1994 .

[12]  Zongli Lin,et al.  Semi-global Exponential Stabilization of Linear Systems Subject to \input Saturation" via Linear Feedbacks , 1993 .

[13]  G. Kreisselmeier Stabilization of linear systems in the presence of output measurement saturation , 1996 .

[14]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .

[15]  Sophie Tarbouriech,et al.  Stabilization with eigenvalues placement of a norm bounded uncertain system by bounded inputs , 1999 .

[16]  Sabine Mondié,et al.  Global asymptotic stabilization for chains of integrators with a delay in the input , 2003, IEEE Trans. Autom. Control..

[17]  Zhong-Ping Jiang,et al.  Robust global stabilization of underactuated ships on a linear course: State and output feedback , 2003 .

[18]  Dennis S. Bernstein,et al.  A benchmark problem for nonlinear control design: problem statement, experimental testbed, and passive nonlinear compensation , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[19]  Tingshu Hu,et al.  Semi-global stabilization of linear systems subject to output saturation , 2001, Syst. Control. Lett..

[20]  Eduardo Sontag Further facts about input to state stabilization , 1990 .

[21]  Randy A. Freeman,et al.  Time-varying feedback for the global stabilization of nonlinear systems with measurement disturbances , 1997, 1997 European Control Conference (ECC).

[22]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[23]  Alessandro Astolfi,et al.  Passivity-based Control of Non-linear Systems , 2001 .

[24]  Yuandan Lin,et al.  A universal formula for stabilization with bounded controls , 1991 .

[25]  Eduardo D. Sontag,et al.  The ISS philosophy as a unifying framework for stability-like behavior , 2001 .

[26]  Petar V. Kokotovic,et al.  Robust nonlinear control of feedforward systems with unmodeled dynamics , 2001, Autom..

[27]  F. Mazenc,et al.  Global asymptotic stabilization for chains of integrators with a delay in the input , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[28]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[29]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[30]  J. Yorke,et al.  Controllability of linear oscillatory systems using positive controls , 1971 .

[31]  Frédéric Grognard,et al.  Global stabilization of feedforward systems with exponentially unstable Jacobian linearization , 1999 .

[32]  D. Bernstein,et al.  Global stabilization of the oscillating eccentric rotor , 1996 .

[33]  F. Mazene,et al.  Global asymptotic output feedback stabilization of feedforward systems , 2001, ECC.

[34]  Eduardo Sontag,et al.  A general result on the stabilization of linear systems using bounded controls , 1994, IEEE Trans. Autom. Control..

[35]  R. Ortega,et al.  Stabilization of Nonlinear Systems via Forwarding , 2001 .

[36]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[37]  R. Ortega,et al.  Stabilization of nonlinear systems via forwarding mod {L/sub g/V} , 2001 .

[39]  Ali Saberi,et al.  Output regulation of linear plants with actuators subject to amplitude and rate constraints , 1999 .

[40]  Ali Saberi,et al.  Constrained stabilization problems for linear plants , 2002, Autom..

[41]  Frédéric Mazenc,et al.  Stabilization of feedforward systems approximated by a non-linear chain of integrators , 1997 .

[42]  D. Nesic,et al.  Output stabilization of nonlinear systems: linear systems with positive outputs as a case study , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[43]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .