Synchronization between different motifs

In this paper, we study the synchronization between different motifs. First, the synchronization between two networks with different topology structures and different dynamical behaviours is studied. With the open-plus-closed-loop(OPCL) method, conditions for two different networks to realize synchronization are given. Then based on the theoretical results achieved, the synchronization between different motifs is studied, which verifies the effectiveness and feasibility of the synchronization scheme.

[1]  Vito Latora,et al.  Synchronization properties of network motifs , 2006, physics/0609126.

[2]  Xiao Fan Wang,et al.  Complex Networks: Topology, Dynamics and Synchronization , 2002, Int. J. Bifurc. Chaos.

[3]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[4]  Yamir Moreno,et al.  Fitness for synchronization of network motifs , 2004, cond-mat/0404054.

[5]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[6]  K. Aihara,et al.  A Systems Biology Perspective on Signal Processing in Genetic Network Motifs [Life Sciences] , 2007, IEEE Signal Processing Magazine.

[7]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[8]  S. Strogatz Exploring complex networks , 2001, Nature.

[9]  Gang Zhang,et al.  A new method to realize cluster synchronization in connected chaotic networks. , 2006, Chaos.

[10]  M. Hasler,et al.  Synchronization in asymmetrically coupled networks with node balance. , 2006, Chaos.

[11]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Motter,et al.  Synchronization is optimal in nondiagonalizable networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[14]  李莹,et al.  Dynamics of network motifs in genetic regulatory networks , 2007 .

[15]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[16]  Liu Xin,et al.  A combined statistical model for multiple motifs search , 2008 .

[17]  Jürgen Kurths,et al.  Synchronization between two coupled complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  I. Grosu,et al.  Collection of master–slave synchronized chaotic systems , 2004 .

[19]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[20]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[21]  Li Ying,et al.  Synchronization between Different Networks , 2008 .

[22]  E. Atlee Jackson,et al.  An open-plus-closed-loop (OPCL) control of complex dynamic systems , 1995 .