Robustness analysis of uncertain discrete‐time systems with dissipation inequalities and integral quadratic constraints

Summary This paper presents a connection between dissipation inequalities and integral quadratic constraints (IQCs) for robustness analysis of uncertain discrete-time systems. Traditional IQC results derived from homotopy methods emphasize an operator-theoretic input–output viewpoint. In contrast, the dissipativity-based IQC approach explicitly incorporates the internal states of the uncertain system, thus providing a more direct procedure to analyze uniform stability with non-zero initial states. The standard dissipation inequality requires a non-negative definite storage function and ‘hard’ IQCs. The term ‘hard’ means that the IQCs must hold over all finite time horizons. This paper presents a modified dissipation inequality that requires neither non-negative definite storage functions nor hard IQCs. This approach leads to linear matrix inequality conditions that can provide less conservative results in terms of robustness analysis. The proof relies on a key J-spectral factorization lemma for IQC multipliers. A simple numerical example is provided to demonstrate the utility of the modified dissipation inequality. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[2]  Peter Seiler,et al.  Integral quadratic constraint theorem: A topological separation approach , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[3]  Vlad Ionescu,et al.  General matrix pencil techniques for the solution of algebraic Riccati equations: a unified approach , 1997, IEEE Trans. Autom. Control..

[4]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[5]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[6]  Joaquín Carrasco,et al.  A complete and convex search for discrete-time noncausal FIR Zames-Falb multipliers , 2014, 53rd IEEE Conference on Decision and Control.

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[9]  Carsten W. Scherer,et al.  Robustness with dynamic IQCs: An exact state-space characterization of nominal stability with applications to robust estimation , 2008, Autom..

[10]  Mazen Farhood,et al.  LPV Control of Nonstationary Systems: A Parameter-Dependent Lyapunov Approach , 2012, IEEE Transactions on Automatic Control.

[11]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[12]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[13]  G. Vinnicombe Uncertainty and Feedback: 8 loop-shaping and the-gap metric , 2000 .

[14]  A. Megretski KYP Lemma for Non-Strict Inequalities and the associated Minimax Theorem , 2010, 1008.2552.

[15]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[16]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[17]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[18]  Chung-Yao Kao,et al.  On Stability of Discrete-Time LTI Systems With Varying Time Delays , 2012, IEEE Transactions on Automatic Control.

[19]  Minyue Fu,et al.  Integral quadratic constraint approach vs. multiplier approach , 2005, Autom..

[20]  G. Vinnicombe Uncertainty and Feedback: H-[infinity] loop shaping and the v-gap metric , 2000 .

[21]  A. Schaft,et al.  L2-Gain and Passivity in Nonlinear Control , 1999 .

[22]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[23]  Bo Kågström,et al.  Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software , 1996, Numerical Algorithms.

[24]  Peter Seiler,et al.  Integral quadratic constraints for delayed nonlinear and parameter-varying systems , 2015, Autom..

[25]  Jacob Engwerda,et al.  Uniqueness conditions for the affine open-loop linear quadratic differential game , 2008, Autom..

[26]  Goele Pipeleers,et al.  Control of linear parameter-varying systems using B-splines , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[27]  A. Varga,et al.  Selection of Basic Software Tools for Standard and Generalized State-space Systems and Transfer Matrix Factorizations , 1998 .

[28]  Peter J Seiler,et al.  Less conservative robustness analysis of linear parameter varying systems using integral quadratic constraints , 2016 .

[29]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[31]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[32]  Matthew C. Turner,et al.  Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches , 2015, 2015 European Control Conference (ECC).

[33]  A. Helmersson An IQC-Based Stability Criterion for Systems with Slowly Varying Parameters , 1999 .

[34]  A. Wills,et al.  Zames-Falb multipliers for quadratic programming , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[35]  Carsten W. Scherer,et al.  IQC‐synthesis with general dynamic multipliers , 2014 .

[36]  Hans Zwart,et al.  J-spectral factorization and equalizing vectors , 2001, Syst. Control. Lett..

[37]  Peter Seiler,et al.  Exponential Decay Rate Conditions for Uncertain Linear Systems Using Integral Quadratic Constraints , 2016, IEEE Transactions on Automatic Control.

[38]  Eric C. Kerrigan,et al.  A modeling and filtering framework for the semi-discretised Navier-Stokes equations , 2009, 2009 European Control Conference (ECC).

[39]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[40]  U. Jönsson Stability analysis with Popov multipliers and integral quadratic constraints , 1997 .

[41]  Ulf T. Jönsson,et al.  Robust Stability Analysis for Feedback Interconnections of Time-Varying Linear Systems , 2013, SIAM J. Control. Optim..

[42]  T. Friesz Dynamic Optimization and Differential Games , 2010 .

[43]  Matthew C. Turner,et al.  Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches , 2016, Eur. J. Control.

[44]  M. A. Kaashoek,et al.  Minimal Factorization of Matrix and Operator Functions , 1980 .

[45]  Chung-Yao Kao,et al.  Simple stability criteria for systems with time-varying delays , 2004, Autom..

[46]  Vlad Ionescu,et al.  On computing the stabilizing solution of the discrete-time Riccati equation , 1992 .

[47]  Peter Seiler,et al.  Stability Analysis With Dissipation Inequalities and Integral Quadratic Constraints , 2015, IEEE Transactions on Automatic Control.

[48]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[49]  Hassan K. Khalil,et al.  Nonlinear Systems Third Edition , 2008 .

[50]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[51]  B. Molinari The stabilizing solution of the discrete algebraic riccati equation , 1975 .

[52]  Benjamin Recht,et al.  Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints , 2014, SIAM J. Optim..

[53]  Anders Rantzer,et al.  A Unifying Framework for Robust Synchronization of Heterogeneous Networks via Integral Quadratic Constraints , 2016, IEEE Transactions on Automatic Control.

[54]  Carsten W. Scherer,et al.  Stability analysis with integral quadratic constraints: A dissipativity based proof , 2013, 52nd IEEE Conference on Decision and Control.

[55]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[56]  Peter J Seiler,et al.  Robustness analysis of linear parameter varying systems using integral quadratic constraints , 2015 .

[57]  Tohru Katayama,et al.  (J, J′)-Spectral factorization and conjugation for discrete-time descriptor system , 1996 .

[58]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[59]  C. Oara,et al.  Generalized Riccati Theory and Robust Control. A Popov Function Approach , 1999 .

[60]  Matthew C. Turner,et al.  L gain bounds for systems with sector bounded and slope-restricted nonlinearities , 2012 .

[61]  Geir E. Dullerud,et al.  Control of nonstationary LPV systems , 2008, Autom..