An Improved Limiter for Multidimensional Flux-Corrected Transport,

Abstract : An improved prescription is given for limiting ('correcting') the high-order fluxes in multidimensional, flux-corrected transport (FCT) algorithms. These fluxes are designed to reduce the numerical error in positive-definite, monotone solutions to the hydrodynamics equations. The role of the limiter is to ensure that the desirable positivity and monotonicity properties of the low-order solutions are not lost in the quest to minimize the numerical error. It is shown that Zalesak's (1979) formulation of a limiter for multidimensional FCT preserves positivity but not monotonicity. The introduction of a prelimiting step into his prescription, based on the original positive and monotone limiter of Boris and Book (1973), is proposed and is shown to improve significantly the performance of multidimensional ECT algorithms.

[1]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[2]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .

[3]  J. Boris,et al.  Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .

[4]  J. Boris,et al.  Solution of continuity equations by the method of flux-corrected transport , 1976 .

[5]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[6]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[7]  C. Richard DeVore,et al.  Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics , 1989 .

[8]  Devore,et al.  Flux-corrected transport algorithms for two-dimensional compressible magnetohydrodynamics. Interim report, January 1987-June 1989 , 1989 .

[9]  S. Antiochos,et al.  On the formation of current sheets in the solar corona , 1990 .

[10]  S. Antiochos,et al.  Coronal current-sheet formation - The effect of asymmetric and symmetric shears , 1991 .

[11]  Elaine S. Oran,et al.  LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations , 1993 .

[12]  Elaine S. Oran,et al.  THE STABILITY OF IMPLODING DETONATIONS : RESULTS OF NUMERICAL SIMULATIONS , 1994 .

[13]  Fernando F. Grinstein,et al.  Self-induced vortex ring dynamics in subsonic rectangular jets , 1995 .

[14]  Spiro K. Antiochos,et al.  The Role of Magnetic Reconnection in Chromospheric Eruptions , 1995 .

[15]  Fernando F. Grinstein,et al.  Dynamics of coherent structures and transition to turbulence in free square jets , 1996 .

[16]  S. Antiochos,et al.  Reconnection-driven Current Filamentation in Solar Arcades , 1996 .

[17]  S. Antiochos,et al.  The Role of Magnetic Reconnection in Solar Activity , 1998, astro-ph/9809161.

[18]  Leon Golub,et al.  Dynamic Responses to Magnetic Reconnection in Solar Arcades , 1998 .

[19]  S. Antiochos,et al.  The Role of Helicity in Magnetic Reconnection: 3D Numerical Simulations , 1999, astro-ph/9901039.

[20]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.