Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier

We demonstrate fast readout of a double quantum dot (DQD) that is coupled to a superconducting resonator. Utilizing parametric amplification in a nonlinear operational mode, we improve the signal-to-noise ratio (SNR) by a factor of 2000 compared to the situation with the parametric amplifier turned off. With an integration time of 400 ns we achieve a SNR of 76. By studying SNR as a function of the integration time we extract an equivalent charge sensitivity of 8 x 10^{-5} e/root(Hz). The high SNR allows us to acquire a DQD charge stability diagram in just 20 ms. At such a high data rate, it is possible to acquire charge stability diagrams in a live "video-mode," enabling real time tuning of the DQD confinement potential.

[1]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[2]  J. R. Petta,et al.  Radio frequency charge sensing in InAs nanowire double quantum dots , 2012, 1205.6494.

[3]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[4]  T. Kontos,et al.  Mesoscopic admittance of a double quantum dot , 2010, 1011.0386.

[5]  S. Tarucha,et al.  Single to quadruple quantum dots with tunable tunnel couplings , 2014, 1401.2212.

[6]  C. Thelander,et al.  Sulfur passivation for ohmic contact formation to InAs nanowires , 2007 .

[7]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[8]  Ritchie,et al.  Measurements of Coulomb blockade with a noninvasive voltage probe. , 1993, Physical review letters.

[9]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[10]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[11]  Daniel Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[12]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[13]  John M. Martinis,et al.  Multiplexed dispersive readout of superconducting phase qubits , 2011, 1209.1781.

[14]  Wei Lu,et al.  Real-time detection of electron tunnelling in a quantum dot , 2003, Nature.

[15]  Luigi Frunzio,et al.  Directional Amplification with a Josephson Circuit , 2013, 1302.4663.

[16]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[17]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[18]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[19]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[20]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[21]  Jonas Bylander,et al.  Current measurement by real-time counting of single electrons , 2004, Nature.

[22]  A. Wallraff,et al.  Quantum-limited amplification and entanglement in coupled nonlinear resonators. , 2014, Physical review letters.

[23]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[24]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[25]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[26]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[27]  J. Bardin,et al.  Matched wideband low-noise amplifiers for radio astronomy. , 2009, The Review of scientific instruments.

[28]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[29]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[30]  Mazyar Mirrahimi,et al.  Persistent control of a superconducting qubit by stroboscopic measurement feedback , 2012, 1301.6095.

[31]  K. West,et al.  High-resolution spectroscopy of two-dimensional electron systems , 2007, Nature.

[32]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[33]  D. Ritchie,et al.  Charge and spin state readout of a double quantum dot coupled to a resonator. , 2010, Nano letters.

[34]  S. Filipp,et al.  Observation of entanglement between itinerant microwave photons and a superconducting qubit. , 2012, Physical review letters.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[37]  C. Caves,et al.  Quantum limits on phase-preserving linear amplifiers , 2012, 1208.5174.

[38]  E. Tholén,et al.  Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators , 2007, cond-mat/0702280.

[39]  R. J. Schoelkopf,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[40]  J. Petta,et al.  Correlating the nanostructure and electronic properties of InAs nanowires. , 2009, Nano letters.

[41]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[42]  A. N. Korotkov,et al.  Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback , 2012, Nature.

[43]  M. Korkusinski,et al.  Stability diagram of a few-electron triple dot. , 2006, Physical review letters.

[44]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[45]  R J Schoelkopf,et al.  Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. , 2001, Physical review letters.

[46]  West,et al.  Single-electron capacitance spectroscopy of discrete quantum levels. , 1992, Physical review letters.

[47]  A. Gossard,et al.  Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot , 2004, cond-mat/0410679.

[48]  Heller,et al.  Imaging coherent electron flow from a quantum point contact , 2000, Science.

[49]  A. Gossard,et al.  Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.

[50]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[51]  Smith,et al.  Observation of zero-point noise squeezing via a Josephson-parametric amplifier. , 1990, Physical review letters.

[52]  Xiang Zhang,et al.  Resonant phase matching of Josephson junction traveling wave parametric amplifiers , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[53]  M R Delbecq,et al.  Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. , 2011, Physical review letters.

[54]  A. C. Gossard,et al.  Fast Sensing of Double-Dot Charge Arrangement and Spin State with a Radio-Frequency Sensor Quantum Dot , 2010, 1001.3585.

[55]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[56]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.

[57]  M. Devoret,et al.  The Josephson bifurcation amplifier , 2009 .