Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses

[1]  K. Shinozaki,et al.  Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression , 2011, Molecular Genetics and Genomics.

[2]  D. Weston,et al.  Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. , 2011, Plant, cell & environment.

[3]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[4]  M. Martin-Magniette,et al.  Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes , 2010, BMC Genomics.

[5]  Subash C. Gupta,et al.  Heat shock proteins in toxicology: how close and how far? , 2010, Life sciences.

[6]  Xueyan Fu,et al.  Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis , 2009, Proceedings of the National Academy of Sciences.

[7]  B. Han,et al.  Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. , 2009, Plant science : an international journal of experimental plant biology.

[8]  Rongmin Zhao,et al.  Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses , 2009, Planta.

[9]  Narmada Thanki,et al.  CDD: specific functional annotation with the Conserved Domain Database , 2008, Nucleic Acids Res..

[10]  Dimitra L. Milioni,et al.  Complexity of Hsp90 in organelle targeting , 2008, Plant Molecular Biology.

[11]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[12]  An-Yuan Guo,et al.  [GSDS: a gene structure display server]. , 2007, Yi chuan = Hereditas.

[13]  S. Katou,et al.  MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance gene N-mediated hypersensitive cell death. , 2007, Plant & cell physiology.

[14]  F. Esposito,et al.  Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis , 2007, Stress.

[15]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[16]  Wilfred W. Li,et al.  MEME: discovering and analyzing DNA and protein sequence motifs , 2006, Nucleic Acids Res..

[17]  P. Hussey,et al.  A Rab-E GTPase Mutant Acts Downstream of the Rab-D Subclass in Biosynthetic Membrane Traffic to the Plasma Membrane in Tobacco Leaf Epidermisw⃞ , 2005, The Plant Cell Online.

[18]  C. Queitsch,et al.  The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. , 2005, Current opinion in plant biology.

[19]  N. Freimer,et al.  A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture , 2004, Human Genomics.

[20]  Beat Keller,et al.  Ancestral genome duplication in rice. , 2004, Genome.

[21]  A. Altman,et al.  Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. , 2004, Trends in plant science.

[22]  S. Dinesh-Kumar,et al.  Molecular Chaperone Hsp90 Associates with Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to Modulate an Innate Immune Response in Plants* , 2004, Journal of Biological Chemistry.

[23]  J. Dangl,et al.  Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein , 2003, The EMBO journal.

[24]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[25]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Keiji Tanaka,et al.  The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome , 2003, The EMBO journal.

[27]  M. Gijzen,et al.  Characterization of a Plant Homolog of Hop, a Cochaperone of Hsp901 , 2003, Plant Physiology.

[28]  K. Hokamp,et al.  A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. , 2003, Genome research.

[29]  S. Ishiguro,et al.  SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins , 2002, The EMBO journal.

[30]  J. Buchner,et al.  Hsp90: Chaperoning signal transduction , 2001, Journal of cellular physiology.

[31]  Jason C. Young,et al.  Hsp90: a specialized but essential protein-folding tool. , 2001, The Journal of cell biology.

[32]  G. Gloor,et al.  The Hsp90 family of proteins in Arabidopsis thaliana , 2001, Cell stress & chaperones.

[33]  D. Donner,et al.  The hsp90-related Protein TRAP1 Is a Mitochondrial Protein with Distinct Functional Properties* , 2000, The Journal of Biological Chemistry.

[34]  Chi-Lien Cheng,et al.  Genetic Interactions between the Chlorate-Resistant Mutant cr88 and the Photomorphogenic Mutants cop1 and hy5 , 2000, Plant Cell.

[35]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[36]  F. Hartl,et al.  In Vivo Function of Hsp90 Is Dependent on ATP Binding and ATP Hydrolysis , 1998, The Journal of cell biology.

[37]  L. Pearl,et al.  ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo , 1998, The EMBO journal.

[38]  Dimitra L. Milioni,et al.  Genomic organization of hsp90 gene family in Arabidopsis , 1997, Plant Molecular Biology.

[39]  D. Prasher,et al.  Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Y. Lin,et al.  A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. , 1997, The Plant cell.

[41]  R. Hardison,et al.  A brief history of hemoglobins: plant, animal, protist, and bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[43]  Ron Edgar,et al.  Gene Expression Omnibus ( GEO ) : Microarray data storage , submission , retrieval , and analysis , 2008 .

[44]  J. Froehlich,et al.  The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. , 2003, The Plant journal : for cell and molecular biology.

[45]  J. Fletcher,et al.  Shoot and floral meristem maintenance in arabidopsis. , 2002, Annual review of plant biology.

[46]  Kathleen Marchal,et al.  PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences , 2002, Nucleic Acids Res..

[47]  John Quackenbush,et al.  Genesis: cluster analysis of microarray data , 2002, Bioinform..

[48]  M. Inouye,et al.  GHKL, an emergent ATPase/kinase superfamily. , 2000, Trends in biochemical sciences.