Linear Codes From Some 2-Designs

A classical method of constructing a linear code over GF(q) with a t-design is to use the incidence matrix of the t-design as a generator matrix over GF(q) of the code. This approach has been extensively investigated in the literature. In this paper, a different method of constructing linear codes using specific classes of 2-designs is studied, and linear codes with a few weights are obtained from almost difference sets, difference sets, and a type of 2-designs associated to semibent functions. Two families of the codes obtained in this paper are optimal. The linear codes presented in this paper have applications in secret sharing and authentication schemes, in addition to their applications in consumer electronics, communication and data storage systems. A coding-theory approach to the characterization of highly nonlinear Boolean functions is presented.

[1]  Cunsheng Ding,et al.  Skew Hadamard difference sets from the Ree-Tits slice symplectic spreads in PG(3, 32h+1) , 2007, J. Comb. Theory, Ser. A.

[2]  Qing Xiang On Balanced Binary Sequences with Two-Level Autocorrelation Functions , 1998, IEEE Trans. Inf. Theory.

[3]  Sihem Mesnager,et al.  Semi-bent Functions from Oval Polynomials , 2013, IMACC.

[4]  Ulrich Dempwolff,et al.  Geometric and design-theoretic aspects of semibent functions I , 2010, Des. Codes Cryptogr..

[5]  Tao Feng,et al.  Cyclotomic constructions of skew Hadamard difference sets , 2011, J. Comb. Theory, Ser. A.

[6]  Cunsheng Ding,et al.  A coding theory construction of new systematic authentication codes , 2005, Theor. Comput. Sci..

[7]  Susanne Ebersbach,et al.  Designs And Their Codes , 2016 .

[8]  Sihem Mesnager,et al.  On Semibent Boolean Functions , 2012, IEEE Transactions on Information Theory.

[9]  Chao Li,et al.  New constructions of semi-bent functions in polynomial forms , 2013, Math. Comput. Model..

[10]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[11]  Cunsheng Ding,et al.  How to Build Robust Shared Control Systems , 1998, Des. Codes Cryptogr..

[12]  Cunsheng Ding,et al.  A class of three-weight cyclic codes , 2013, Finite Fields Their Appl..

[13]  Liang Hua,et al.  A CLASS OF THREE-WEIGHT CYCLIC CODES , 2016 .

[14]  Sihem Mesnager,et al.  Several New Infinite Families of Bent Functions and Their Duals , 2014, IEEE Transactions on Information Theory.

[15]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[16]  Tor Helleseth,et al.  Further Results on Niho Bent Functions , 2012, IEEE Transactions on Information Theory.

[17]  Bernard Courteau,et al.  On triple-sum-sets and two or three weights codes , 1984, Discret. Math..

[18]  Qing Xiang,et al.  Pseudo-Paley graphs and skew Hadamard difference sets from presemifields , 2007, Des. Codes Cryptogr..

[19]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[20]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[21]  Keqin Feng,et al.  Value Distributions of Exponential Sums From Perfect Nonlinear Functions and Their Applications , 2007, IEEE Transactions on Information Theory.

[22]  Sihem Mesnager,et al.  On constructions of semi-bent functions from bent functions , 2013, Discrete Geometry and Algebraic Combinatorics.

[23]  Keqin Feng,et al.  Weight distribution of some reducible cyclic codes , 2008, Finite Fields Their Appl..

[24]  Antonio Maschietti Difference Sets and Hyperovals , 1998, Des. Codes Cryptogr..

[25]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[26]  Jong-Seon No,et al.  Weight distribution of some cyclic codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[27]  Ulrich Dempwolff Geometric and design-theoretic aspects of semibent functions II , 2012, Des. Codes Cryptogr..

[28]  Sihem Mesnager On Semi-bent Functions and Related Plateaued Functions Over the Galois Field F2n , 2014, Open Problems in Mathematics and Computational Science.

[29]  Chengju Li,et al.  Hamming Weights of the Duals of Cyclic Codes With Two Zeros , 2014, IEEE Transactions on Information Theory.

[30]  Cunsheng Ding,et al.  Cyclotomic Linear Codes of Order $3$ , 2007, IEEE Transactions on Information Theory.

[31]  Chengju Li,et al.  Weight distributions of cyclic codes with respect to pairwise coprime order elements , 2013, Finite Fields Their Appl..

[32]  Hans Dobbertin,et al.  New cyclic difference sets with Singer parameters , 2004, Finite Fields Their Appl..

[33]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[34]  H. Niederreiter,et al.  Two-Weight Codes Punctured from Irreducible Cyclic Codes , 2008 .

[35]  S. Mesnager,et al.  Bent vectorial functions and linear codes from o-polynomials , 2015, Des. Codes Cryptogr..

[36]  Claude Carlet,et al.  New classes of almost bent and almost perfect nonlinear polynomials , 2006, IEEE Transactions on Information Theory.

[37]  H. Hollmann,et al.  A Proof of the Welch and Niho Conjectures on Cross-Correlations of Binary m-Sequences , 2001 .

[38]  Cunsheng Ding,et al.  Linear codes from perfect nonlinear mappings and their secret sharing schemes , 2005, IEEE Transactions on Information Theory.

[39]  C. Ding Codes From Difference Sets , 2014 .

[40]  A. Calderbank,et al.  THREE-WEIGHT CODES AND ASSOCIATION SCHEMES , 2014 .

[41]  R. Calderbank,et al.  The Geometry of Two‐Weight Codes , 1986 .

[42]  LuoJinquan,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008 .

[43]  Tor Helleseth,et al.  A New Family of Ternary Sequences with Ideal Two-level Autocorrelation Function , 2001, Des. Codes Cryptogr..

[44]  Lei Hu,et al.  Further crosscorrelation properties of sequences with the decimation factor $${d=\frac{p^n+1}{p+1}-\frac{p^n-1}{2}}$$ , 2010, Applicable Algebra in Engineering, Communication and Computing.

[45]  Anne Canteaut,et al.  A new class of monomial bent functions , 2006, 2006 IEEE International Symposium on Information Theory.

[46]  Lei Hu,et al.  Binary Constant Weight Codes Based on Cyclic Difference Sets , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[47]  Cunsheng Ding,et al.  A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.

[48]  Anne Canteaut,et al.  Weight Divisibility of Cyclic Codes, Highly Nonlinear Functions on F2m, and Crosscorrelation of Maximum-Length Sequences , 2000, SIAM J. Discret. Math..

[49]  K. T. Arasu,et al.  Some New Difference Sets , 1995, J. Comb. Theory, Ser. A.

[50]  Koji Momihara,et al.  Inequivalence of Skew Hadamard Difference Sets and Triple Intersection Numbers Modulo a Prime , 2013, Electron. J. Comb..

[51]  Sihem Mesnager,et al.  Semibent Functions From Dillon and Niho Exponents, Kloosterman Sums, and Dickson Polynomials , 2011, IEEE Transactions on Information Theory.

[52]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[53]  Cunsheng Ding,et al.  Secret sharing schemes from three classes of linear codes , 2006, IEEE Transactions on Information Theory.