Nickel-Resistant Determinant from Leptospirillum ferriphilum

ABSTRACT Leptospirillum ferriphilum strain UBK03 isolated from a mine in Jiangxi, China, is resistant to Ni2+ (30 to 40 mM). A four-gene nickel resistance cluster was identified and, when transformed into Escherichia coli, enabled growth in 6 mM nickel. Mutation experiments revealed that the genes ncrA, ncrB, and ncrC could confer nickel resistance in Escherichia coli, whereas the gene ncrY could have a negative effect on nickel resistance.

[1]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[2]  J. Aguillón,et al.  A new spectrophotometric method for the determination of ferrous iron in the presence of ferric iron , 2007 .

[3]  S. Deane,et al.  Resistance Determinants of a Highly Arsenic-Resistant Strain of Leptospirillum ferriphilum Isolated from a Commercial Biooxidation Tank , 2006, Applied and Environmental Microbiology.

[4]  G. von Heijne,et al.  Materials and Methods Figs. S1 to S3 References and Notes Global Topology Analysis of the Escherichia Coli Inner Membrane Proteome , 2022 .

[5]  M. Mandrand-Berthelot,et al.  Identification of rcnA (yohM), a Nickel and Cobalt Resistance Gene in Escherichia coli , 2005, Journal of bacteriology.

[6]  S. Nandi,et al.  Integration of Metal-Resistant Determinants from the Plasmid of an Acidocella Strain into the Chromosome of Escherichia coli DH5α* , 2005, Current Microbiology.

[7]  Johan Nilsson,et al.  Experimentally based topology models for E. coli inner membrane proteins , 2004, Protein science : a publication of the Protein Society.

[8]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[9]  H. Schlegel,et al.  Nucleotide sequence and expression of the ncr nickel and cobalt resistance in Hafnia alvei 5-5. , 2004, International microbiology : the official journal of the Spanish Society for Microbiology.

[10]  K. Marchal,et al.  Genetic and Physical Map of the pLAFR1 Vector , 2004, DNA sequence : the journal of DNA sequencing and mapping.

[11]  C. Baker-Austin,et al.  Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. , 2003, Microbiology.

[12]  H. Schlegel,et al.  Conjugative plasmid mediated inducible nickel resistance in Hafnia alvei 5-5 , 2003, International microbiology : the official journal of the Spanish Society for Microbiology.

[13]  P. C. Banerjee,et al.  Resistance to Cadmium and Zinc in Acidiphilium symbioticum KM2 Is Plasmid Mediated , 2002, Current Microbiology.

[14]  D. Rawlings,et al.  Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40°C , 2002, Applied and Environmental Microbiology.

[15]  G. von Heijne,et al.  Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli , 2001, FEBS letters.

[16]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[17]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[18]  Luis López-Maury,et al.  A Gene Cluster Involved in Metal Homeostasis in the Cyanobacterium Synechocystis sp. Strain PCC 6803 , 2000, Journal of bacteriology.

[19]  Dietrich H. Nies,et al.  Regulation of the cnr Cobalt and Nickel Resistance Determinant from Ralstonia sp. Strain CH34 , 2000, Journal of bacteriology.

[20]  M Mergeay,et al.  Amplified rDNA restriction analysis and further genotypic characterisation of metal-resistant soil bacteria and related facultative hydrogenotrophs. , 1999, Systematic and applied microbiology.

[21]  J. Modak,et al.  Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance , 1998, Antonie van Leeuwenhoek.

[22]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[23]  P. C. Banerjee,et al.  Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli , 1997, Applied and environmental microbiology.

[24]  H. Schlegel,et al.  Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems , 1995, Applied and environmental microbiology.

[25]  S. Silver,et al.  Ion efflux systems involved in bacterial metal resistances , 1995, Journal of Industrial Microbiology.

[26]  B. Friedrich,et al.  A topological model for the high‐affinity nickel transporter of Alcaligenes eutrophus , 1994, Molecular microbiology.

[27]  H. Liesegang,et al.  Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34 , 1993, Journal of bacteriology.

[28]  M. Mergeay,et al.  A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of the cnr cobalt-nickel resistance system , 1993, Journal of bacteriology.

[29]  H. Schlegel,et al.  High-Level Nickel Resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2 , 1991, Applied and environmental microbiology.

[30]  M. Kanehisa,et al.  Expert system for predicting protein localization sites in gram‐negative bacteria , 1991, Proteins.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  Eugene W. Myers,et al.  Basic local alignment search tool. Journal of Molecular Biology , 1990 .

[33]  M. Mergeay,et al.  Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals , 1985, Journal of bacteriology.

[34]  P. C. Banerjee Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments. , 2004, Indian journal of experimental biology.

[35]  H. Schlegel,et al.  The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca: conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria , 2004, Biometals.

[36]  T. Eitinger,et al.  Heterologous production and characterization of bacterial nickel/cobalt permeases. , 2004, FEMS microbiology letters.

[37]  Banerjee Pc Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments. , 2004 .

[38]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[39]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .