Elimination of Drying‐Dependent Component Deviation Using a Composite Solvent Strategy Enables High‐Performance Inkjet‐Printed Organic Solar Cells with Efficiency Approaching 16%

[1]  Jianqi Zhang,et al.  Enhancing Photon Utilization Efficiency for High‐Performance Organic Photovoltaic Cells via Regulating Phase‐Transition Kinetics , 2023, Advanced materials.

[2]  Yunfei Han,et al.  Balancing the Molecular Aggregation and Vertical Phase Separation in the Polymer: Nonfullerene Blend Films Enables 13.09% Efficiency of Organic Solar Cells with Inkjet‐Printed Active Layer , 2022, Advanced Energy Materials.

[3]  Bo Z. Xu,et al.  A Universal Ternary‐Solvent‐Ink Strategy toward Efficient Inkjet‐Printed Perovskite Quantum Dot Light‐Emitting Diodes , 2022, Advanced materials.

[4]  Jianhui Hou,et al.  Tandem Organic Solar Cell with 20.2% Efficiency , 2021, Joule.

[5]  Daqin Yun,et al.  Kinetics Manipulation Enables High‐Performance Thick Ternary Organic Solar Cells via R2R‐Compatible Slot‐Die Coating , 2021, Advanced materials.

[6]  Q. Peng,et al.  Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress , 2021, Advanced materials.

[7]  H. Ade,et al.  Baseplate Temperature‐Dependent Vertical Composition Gradient in Pseudo‐Bilayer Films for Printing Non‐Fullerene Organic Solar Cells , 2021, Advanced Energy Materials.

[8]  Zhibin Yu,et al.  High‐Speed Fabrication of All‐Inkjet‐Printed Organometallic Halide Perovskite Light‐Emitting Diodes on Elastic Substrates , 2021, Advanced materials.

[9]  Weiwei Li,et al.  Fullerene as an additive for increasing the efficiency of organic solar cells to more than 17. , 2021, Journal of colloid and interface science.

[10]  Jiansheng Jie,et al.  Patterning Liquid Crystalline Organic Semiconductors via Inkjet Printing for High‐Performance Transistor Arrays and Circuits , 2021, Advanced Functional Materials.

[11]  Anil Kumar Bharwal,et al.  High‐Efficiency Digital Inkjet‐Printed Non‐Fullerene Polymer Blends Using Non‐Halogenated Solvents , 2021, Advanced Energy and Sustainability Research.

[12]  A. Jen,et al.  Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length , 2021, Nature Communications.

[13]  D. Baran,et al.  Ink Engineering of Transport Layers for 9.5% Efficient All‐Printed Semitransparent Nonfullerene Solar Cells , 2020, Advanced Functional Materials.

[14]  Jianqi Zhang,et al.  Synergistic Optimization Enables Large‐Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Small‐Area Rigid Devices , 2020, Advanced materials.

[15]  Bumjoon J. Kim,et al.  Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor , 2020 .

[16]  S. Roth,et al.  Hot Hydrocarbon‐Solvent Slot‐Die Coating Enables High‐Efficiency Organic Solar Cells with Temperature‐Dependent Aggregation Behavior , 2020, Advanced materials.

[17]  Q. Peng,et al.  Recent advances in morphology optimizations towards highly efficient ternary organic solar cells , 2020 .

[18]  K. Salama,et al.  Fully Inkjet‐Printed, Ultrathin and Conformable Organic Photovoltaics as Power Source Based on Cross‐Linked PEDOT:PSS Electrodes , 2020, Advanced Materials Technologies.

[19]  M. Zhang,et al.  Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties , 2020, Advanced Energy Materials.

[20]  B. Richards,et al.  Inkjet‐Printed Micrometer‐Thick Perovskite Solar Cells with Large Columnar Grains , 2019, Advanced Energy Materials.

[21]  Dipti Gupta,et al.  Fully printed organic solar cells – a review of techniques, challenges and their solutions , 2019, Opto-Electronics Review.

[22]  D. Gupta,et al.  Inkjet printing of zinc oxide and P3HT:ICBA in ambient conditions for inverted bulk heterojunction solar cells , 2019, Optical Materials.

[23]  D. Baran,et al.  Digital Inkjet Printing of High‐Efficiency Large‐Area Nonfullerene Organic Solar Cells , 2019, Advanced Materials Technologies.

[24]  Wei Li,et al.  Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells , 2019, Joule.

[25]  Takhee Lee,et al.  Recent Progress in Inkjet‐Printed Thin‐Film Transistors , 2019, Advanced science.

[26]  Xiaowei Zhan,et al.  Morphology Control in Organic Solar Cells , 2018 .

[27]  C. Brabec,et al.  Shy Organic Photovoltaics: Digitally Printed Organic Solar Modules With Hidden Interconnects , 2018 .

[28]  Qi Zhang,et al.  Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects , 2017 .

[29]  Christoph J. Brabec,et al.  Inkjet printed silver nanowire percolation networks as electrodes for highly efficient semitransparent organic solar cells , 2016 .

[30]  S. Gupta,et al.  Inverted polymer bulk heterojunction solar cells with ink-jet printed electron transport and active layers , 2016 .

[31]  Ronn Andriessen,et al.  Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents , 2015 .

[32]  T. Eggenhuisen,et al.  Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells , 2015 .

[33]  R. J. Kline,et al.  In Situ Characterization of Polymer–Fullerene Bilayer Stability , 2015 .

[34]  H. Sirringhaus,et al.  All‐Inkjet‐Printed, All‐Air‐Processed Solar Cells , 2014 .

[35]  M Sampietro,et al.  Fully Inkjet‐Printed Organic Photodetectors with High Quantum Yield , 2013, Advanced materials.

[36]  Alexander Lange,et al.  Modified processing conditions for optimized organic solar cells with inkjet printed P3HT:PC61BM active layers , 2013 .

[37]  Alexander Lange,et al.  Inkjet printed solar cell active layers prepared from chlorine-free solvent systems , 2013 .

[38]  Thuc‐Quyen Nguyen,et al.  Molecular solubility and hansen solubility parameters for the analysis of phase separation in bulk heterojunctions , 2012 .

[39]  K. Liao,et al.  Effect of printing parameters and annealing on organic photovoltaics performance , 2012 .

[40]  Brian Derby,et al.  Inkjet printing ceramics: from drops to solid , 2011 .

[41]  M. Wegener,et al.  A new approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices with printed passive and active layers , 2010 .

[42]  B. Derby Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution , 2010 .

[43]  H. Wijshoff,et al.  The dynamics of the piezo inkjet printhead operation , 2010 .

[44]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[45]  Christoph J. Brabec,et al.  On the effect of poly(3-hexylthiophene) regioregularity on inkjet printed organic solar cells , 2009 .

[46]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[47]  Jan Genoe,et al.  Polymer based organic solar cells using ink-jet printed active layers , 2008 .

[48]  V. Subramanian,et al.  Inkjet-printed line morphologies and temperature control of the coffee ring effect. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[49]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[50]  Ulrich S. Schubert,et al.  Ink‐Jet Printing of Electron Donor/Acceptor Blends: Towards Bulk Heterojunction Solar Cells , 2005 .

[51]  Shuqiong Lan,et al.  Impact of inkjet printing parameters on the morphology and device performance of organic photovoltaics , 2021, Journal of Physics D: Applied Physics.

[52]  Christoph J. Brabec,et al.  Combinatorial Screening of Polymer:Fullerene Blends for Organic Solar Cells by Inkjet Printing , 2011 .