Quantum steering ellipsoids, extremal physical states and monogamy

Any two-qubit state can be faithfully represented by a steering ellipsoid inside the Bloch sphere, but not every ellipsoid inside the Bloch sphere corresponds to a two-qubit state. We give necessary and sufficient conditions for when the geometric data describe a physical state and investigate maximal volume ellipsoids lying on the physical-unphysical boundary. We derive monogamy relations for steering that are strictly stronger than the Coffman–Kundu–Wootters (CKW) inequality for monogamy of concurrence. The CKW result is thus found to follow from the simple perspective of steering ellipsoid geometry. Remarkably, we can also use steering ellipsoids to derive non-trivial results in classical Euclidean geometry, extending Eulerʼs inequality for the circumradius and inradius of a triangle.

[1]  B. Moor,et al.  Local filtering operations on two qubits , 2000, quant-ph/0011111.

[2]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[3]  Pawel Horodecki,et al.  Beyond the standard entropic inequalities: Stronger scalar separability criteria and their applications , 2007, 0707.4315.

[4]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[5]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[8]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[9]  Erdan Gu,et al.  Conference on Lasers and Electro-OP , 2007 .

[10]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[11]  Adam Miranowicz,et al.  Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality , 2013, 1301.2969.

[12]  Comparison of the relative entropy of entanglement and negativity , 2004, quant-ph/0409009.

[13]  J. Macek,et al.  Three-Coulomb-Wave Pluvinage Model for Compton Double Ionization of Helium in the Region of the Cross-Section Maximum , 2005 .

[14]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[15]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[16]  Ion Nechita,et al.  A universal set of qubit quantum channels , 2013, 1306.0495.

[17]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[18]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[19]  Karol Bartkiewicz,et al.  Entanglement estimation from Bell inequality violation , 2013, 1306.6504.

[20]  Ting Yu,et al.  Evolution from entanglement to decoherence of bipartite mixed "X" states , 2005, Quantum Inf. Comput..

[21]  G. Bisker,et al.  Visualizing Two Qubits , 2007, 0706.2466.

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  T. Hiroshima,et al.  Maximally entangled mixed states under nonlocal unitary operations in two qubits , 2000 .