Recombinogenic Phenotype of Human Activation-Induced Cytosine Deaminase

Class switch recombination, gene conversion, and somatic hypermutation that diversify rearranged Ig genes to produce various classes of high affinity Abs are dependent on the enzyme activation-induced cytosine deaminase (AID). Evidence suggests that somatic hypermutation is due to error-prone DNA repair that is initiated by AID-mediated deamination of cytosine in DNA, whereas the mechanism by which AID controls recombination remains to be elucidated. In this study, using a yeast model system, we have observed AID-dependent recombination. Expression of human AID in wild-type yeast is mutagenic for G-C to A-T transitions, and as expected, this mutagenesis is increased upon inactivation of uracil-DNA glycosylase. AID expression also strongly induces intragenic mitotic recombination, but only in a strain possessing uracil-DNA glycosylase. Thus, the initial step of base excision repair is required for AID-dependent recombination and is a branch point for either hypermutagenesis or recombination.

[1]  Samuel H. Wilson,et al.  Base Excision Repair Intermediates Induce p53-independent Cytotoxic and Genotoxic Responses* , 2003, Journal of Biological Chemistry.

[2]  A. Fischer,et al.  Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination , 2003, Nature Immunology.

[3]  A. Fischer,et al.  AID mutant analyses indicate requirement for class-switch-specific cofactors , 2003, Nature Immunology.

[4]  T. Kunkel,et al.  Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight. , 2003, Nucleic acids research.

[5]  J. Weill,et al.  What role for AID: mutator, or assembler of the immunoglobulin mutasome? , 2003, Nature Immunology.

[6]  A. Bhagwat,et al.  Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. , 2003, Nucleic acids research.

[7]  A. Kuzminov,et al.  RdgB acts to avoid chromosome fragmentation in Escherichia coli , 2003, Molecular microbiology.

[8]  P. Casali,et al.  AID-dependent generation of resected double-strand DNA breaks and recruitment of Rad52/Rad51 in somatic hypermutation. , 2003, Immunity.

[9]  F. Papavasiliou,et al.  AID Mediates Hypermutation by Deaminating Single Stranded DNA , 2003, The Journal of experimental medicine.

[10]  R. Cunningham,et al.  Repair System for Noncanonical Purines in Escherichia coli , 2003, Journal of bacteriology.

[11]  M. Nussenzweig,et al.  Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand , 2003, Nature Immunology.

[12]  F. Alt,et al.  Transcription-targeted DNA deamination by the AID antibody diversification enzyme , 2003, Nature.

[13]  A. Kenter Class-switch recombination: after the dawn of AID. , 2003, Current opinion in immunology.

[14]  J. Sale,et al.  Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line , 2003, The EMBO journal.

[15]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. Honjo,et al.  De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Weill,et al.  Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota , 2002, Nature.

[18]  D. Barnes,et al.  Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice , 2002, Current Biology.

[19]  M. Neuberger,et al.  Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase , 2002, Nature.

[20]  Tasuku Honjo,et al.  Does AID need another aid? , 2002, Nature Immunology.

[21]  Alberto Martin,et al.  Somatic hypermutation of the AID transgene in B and non-B cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Engelward,et al.  The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. , 2002, DNA repair.

[23]  T. Kunkel,et al.  Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase η during copying of a mouse immunoglobulin κ light chain transgene , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Neuberger,et al.  AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification , 2002, Nature.

[25]  T. Honjo,et al.  AID Enzyme-Induced Hypermutation in an Actively Transcribed Gene in Fibroblasts , 2002, Science.

[26]  T. Honjo,et al.  The AID enzyme induces class switch recombination in fibroblasts , 2002, Nature.

[27]  M. Neuberger,et al.  AID Is Essential for Immunoglobulin V Gene Conversion in a Cultured B Cell Line , 2002, Current Biology.

[28]  T. Honjo,et al.  Activation-induced Deaminase (AID)-directed Hypermutation in the Immunoglobulin Sμ Region , 2002, The Journal of Experimental Medicine.

[29]  Alberto Martin,et al.  Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas , 2002, Nature.

[30]  A. Kuzminov Single-strand interruptions in replicating chromosomes cause double-strand breaks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Toshiro Matsuda,et al.  Somatic mutation hotspots correlate with DNA polymerase η error spectrum , 2001, Nature Immunology.

[32]  M. Goodman,et al.  Error-Prone Candidates Vie for Somatic Mutation , 2000, The Journal of experimental medicine.

[33]  A. Fischer,et al.  Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2) , 2000, Cell.

[34]  T. Honjo,et al.  Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme , 2000, Cell.

[35]  M. Goodman,et al.  Sloppier copier DNA polymerases involved in genome repair. , 2000, Current opinion in genetics & development.

[36]  W. Edelmann,et al.  Somatic Hypermutation in Muts Homologue (Msh)3-, Msh6-, and Msh3/Msh6-Deficient Mice Reveals a Role for the Msh2–Msh6 Heterodimer in Modulating the Base Substitution Pattern , 2000, The Journal of experimental medicine.

[37]  P. Lipsky,et al.  Somatic hypermutation of VκJκ rearrangements: targeting of RGYW motifs on both DNA strands and preferential selection of mutated codons within RGYW motifs , 1999 .

[38]  F. D. de Serres,et al.  Similarity pattern analysis in mutational distributions. , 1999, Mutation research.

[39]  J. Spencer,et al.  Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. , 1999, Journal of immunology.

[40]  T. Kunkel,et al.  Mutator Phenotypes Conferred by MLH1Overexpression and by Heterozygosity for mlh1Mutations , 1999, Molecular and Cellular Biology.

[41]  P. Lipsky,et al.  Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands , 1998, European journal of immunology.

[42]  R. Staden,et al.  Both DNA strands of antibody genes are hypermutation targets. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Tasuku Honjo,et al.  Frequent but biased class switch recombination in the Sμ flanking regions , 1998, Current Biology.

[44]  V. Poltoratsky,et al.  The Promotion of  V Region Hypermutation , 1997, The Journal of experimental medicine.

[45]  C. Lawrence,et al.  Deoxycytidyl transferase activity of yeast REV1 protein , 1996, Nature.

[46]  L. Johnston,et al.  Pathway correcting DNA replication errors in Saccharomyces cerevisiae. , 1993, The EMBO journal.

[47]  N A Kolchanov,et al.  Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. , 1992, Biochimica et biophysica acta.

[48]  P. Burgers,et al.  The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair , 1991, Journal of bacteriology.

[49]  T. Petes,et al.  Mitotic and meiotic gene conversion of Ty elements and other insertions in Saccharomyces cerevisiae. , 1989, Genetics.

[50]  R. Laskov,et al.  The role of somatic hypermutation in the generation of antibody diversity. , 1989, Science.

[51]  F. Alt,et al.  Development of the primary antibody repertoire. , 1987, Science.

[52]  A Cumano,et al.  Evolutionary and somatic selection of the antibody repertoire in the mouse. , 1987, Science.

[53]  R. Mortimer,et al.  Isolation of a DNA fragment that is expressed as an amber suppressor when present in high copy number in yeast. , 1984, Gene.

[54]  F. Winston,et al.  Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene , 2004, Molecular and General Genetics MGG.

[55]  T. Honjo,et al.  Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. , 2002, The Journal of experimental medicine.

[56]  S. Jinks-Robertson,et al.  Yeast base excision repair: interconnections and networks. , 2001, Progress in nucleic acid research and molecular biology.