Picking up speed: advances in the genetics of primary ciliary dyskinesia

[1]  T. Abe,et al.  Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. , 2013, Developmental biology.

[2]  B. Kerem,et al.  LRRC6 Mutation Causes Primary Ciliary Dyskinesia with Dynein Arm Defects , 2013, PloS one.

[3]  S. Lindberg,et al.  The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans , 2013, Nature Genetics.

[4]  Emily H Turner,et al.  Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. , 2013, American journal of human genetics.

[5]  Richard D Emes,et al.  Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. , 2013, American journal of human genetics.

[6]  S. Amselem,et al.  Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. , 2012, American journal of human genetics.

[7]  J. Nakai,et al.  Cilia at the Node of Mouse Embryos Sense Fluid Flow for Left-Right Determination via Pkd2 , 2012, Science.

[8]  Kate S. Wilson,et al.  Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. , 2012, American journal of human genetics.

[9]  M. Hurles,et al.  Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. , 2012, American journal of human genetics.

[10]  C. E. Larkins,et al.  Defective Nodal and Cerl2 expression in the Arl13b(hnn) mutant node underlie its heterotaxia. , 2012, Developmental biology.

[11]  A. Rousseau,et al.  Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia , 2012, Journal of Medical Genetics.

[12]  M. Barmada,et al.  High Prevalence of Respiratory Ciliary Dysfunction in Congenital Heart Disease Patients With Heterotaxy , 2012, Circulation.

[13]  A. Schier,et al.  CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms , 2012, Nature Genetics.

[14]  T. Ferkol,et al.  Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. , 2012, The Journal of pediatrics.

[15]  H. Takeda,et al.  Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins. , 2012, Differentiation; research in biological diversity.

[16]  M. Strippoli,et al.  Management of primary ciliary dyskinesia in European children: recommendations and clinical practice , 2012, European Respiratory Journal.

[17]  H. Mussaffi,et al.  Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia , 2012, Nature Genetics.

[18]  S. Brody,et al.  Sensory functions of motile cilia and implication for bronchiectasis. , 2012, Frontiers in bioscience.

[19]  M. Rosenfeld,et al.  Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure , 2011, Thorax.

[20]  Hong Wang,et al.  Regulation of ciliary beat frequency by the nitric oxide signaling pathway in mouse nasal and tracheal epithelial cells. , 2011, Experimental cell research.

[21]  H. Omran,et al.  The emerging genetics of primary ciliary dyskinesia. , 2011, Proceedings of the American Thoracic Society.

[22]  P. Andrew,et al.  Cooling of cilia allows functional analysis of the beat pattern for diagnostic testing. , 2011, Chest.

[23]  J. García-Verdugo,et al.  A Transition Zone Complex Regulates Mammalian Ciliogenesis and Ciliary Membrane Composition , 2011, Nature Genetics.

[24]  A. Boner,et al.  Nasal nitric oxide and nitric oxide synthase expression in primary ciliary dyskinesia , 2011, European Respiratory Journal.

[25]  K. Anderson,et al.  The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation , 2011, Nature Genetics.

[26]  J. Belmont,et al.  CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs , 2011, Nature Genetics.

[27]  S. Rennard,et al.  Long-term cigarette smoke exposure in a mouse model of ciliated epithelial cell function. , 2010, American journal of respiratory cell and molecular biology.

[28]  M. Nachury,et al.  Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? , 2010, Annual review of cell and developmental biology.

[29]  A. Boner,et al.  New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure , 2010, European Respiratory Journal.

[30]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[31]  D. Nicastro,et al.  The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella , 2009, The Journal of cell biology.

[32]  H. Zentgraf,et al.  Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. , 2009, American journal of human genetics.

[33]  Kate Baker,et al.  Making sense of cilia in disease: The human ciliopathies , 2009, American journal of medical genetics. Part C, Seminars in medical genetics.

[34]  Yehuda Ben-Shahar,et al.  Motile Cilia of Human Airway Epithelia Are Chemosensory , 2009, Science.

[35]  J. Carson,et al.  Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome , 2009, Genetics in Medicine.

[36]  N. Katsanis,et al.  The Vertebrate Primary Cilium in Development, Homeostasis, and Disease , 2009, Cell.

[37]  Colin A. Johnson,et al.  Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. , 2009, American journal of human genetics.

[38]  A. Miyawaki,et al.  Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins , 2008, Nature.

[39]  H. Mussaffi,et al.  DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. , 2008, American journal of human genetics.

[40]  S. Brody,et al.  Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. , 2008, Chest.

[41]  J. Rosenbaum,et al.  Chapter Two Intraflagellar Transport (IFT) , 2008 .

[42]  J. Rosenbaum,et al.  Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. , 2008, Current topics in developmental biology.

[43]  P. Satir,et al.  The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. , 2008, Current topics in developmental biology.

[44]  H. Omran,et al.  When cilia go bad: cilia defects and ciliopathies , 2008, Nature Reviews Molecular Cell Biology.

[45]  A. Bush,et al.  Diagnosing primary ciliary dyskinesia , 2007, Thorax.

[46]  H. Omran,et al.  Congenital Heart Disease and Other Heterotaxic Defects in a Large Cohort of Patients With Primary Ciliary Dyskinesia , 2007, Circulation.

[47]  Tamara Caspary,et al.  The graded response to Sonic Hedgehog depends on cilia architecture. , 2007, Developmental cell.

[48]  T. Wyatt,et al.  Nitric Oxide-dependent Cilia Regulatory Enzyme Localization in Bovine Bronchial Epithelial Cells , 2007, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[49]  S. Amselem,et al.  A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia , 2007, Proceedings of the National Academy of Sciences.

[50]  P. Satir,et al.  Overview of structure and function of mammalian cilia. , 2007, Annual review of physiology.

[51]  D. Mitchell,et al.  The evolution of eukaryotic cilia and flagella as motile and sensory organelles. , 2007, Advances in experimental medicine and biology.

[52]  H. Omran,et al.  Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. , 2006, American journal of respiratory and critical care medicine.

[53]  Adrian Gherman,et al.  The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia , 2006, Nature Genetics.

[54]  G. Pazour,et al.  The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. , 2006, Molecular biology of the cell.

[55]  G. Pazour,et al.  Radial spoke proteins of Chlamydomonas flagella , 2006, Journal of Cell Science.

[56]  A. Moore,et al.  RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa , 2005, Journal of Medical Genetics.

[57]  B. Yoder,et al.  An incredible decade for the primary cilium: a look at a once-forgotten organelle. , 2005, American journal of physiology. Renal physiology.

[58]  R. Reinhardt,et al.  Identification and analysis of axonemal dynein light chain 1 in primary ciliary dyskinesia patients. , 2005, American journal of respiratory cell and molecular biology.

[59]  Tanya M. Teslovich,et al.  Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene , 2004, Cell.

[60]  S. Dutcher Elucidation of Basal Body and Centriole Functions in Chlamydomonas reinhardtii , 2003, Traffic.

[61]  Y. Saijoh,et al.  The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia , 2003, Development.

[62]  G. Pazour,et al.  The vertebrate primary cilium is a sensory organelle. , 2003, Current opinion in cell biology.

[63]  Miguel Armengot,et al.  Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  C. Tabin,et al.  Left–right development: Conserved function for embryonic nodal cilia , 2002, Nature.

[65]  H. Lehrach,et al.  Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry , 2002, Nature Genetics.

[66]  B. Kobe,et al.  The leucine-rich repeat as a protein recognition motif. , 2001, Current opinion in structural biology.

[67]  J. Lafitte,et al.  Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). , 2001, American journal of human genetics.

[68]  T. Wienker,et al.  Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. , 2000, American journal of respiratory cell and molecular biology.

[69]  P. Andrew,et al.  Relative Roles of Pneumolysin and Hydrogen Peroxide from Streptococcus pneumoniae in Inhibition of Ependymal Ciliary Beat Frequency , 2000, Infection and Immunity.

[70]  S. Amselem,et al.  Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. , 1999, American journal of human genetics.

[71]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1999, Cell.

[72]  N. Wilson,et al.  Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. , 1999, The European respiratory journal.

[73]  R. Johns,et al.  Localization of endothelial NOS at the basal microtubule membrane in ciliated epithelium of rat lung. , 1996, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[74]  T. Ravikumar,et al.  Unusual inheritance of primary ciliary dyskinesia (Kartagener's syndrome). , 1994, Journal of medical genetics.

[75]  R. Hard,et al.  Autoregulation of beat frequency in respiratory ciliated cells. Demonstration by viscous loading. , 1991, The American review of respiratory disease.

[76]  U. Goodenough,et al.  Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella , 1985, The Journal of cell biology.

[77]  N. Konietzko,et al.  Ciliary beat frequency of biopsy samples taken from normal persons and patients with various lung diseases. , 1981, Chest.

[78]  P. Camner,et al.  The immotile-cilia syndrome. A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. , 1977, The New England journal of medicine.

[79]  B. Afzelius A human syndrome caused by immotile cilia. , 1976, Science.

[80]  S. Sorokin Reconstructions of centriole formation and ciliogenesis in mammalian lungs. , 1968, Journal of cell science.