TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization.

[1]  A. Viale,et al.  A genome-wide high-resolution array-CGH analysis of cutaneous melanoma and comparison of array-CGH to FISH in diagnostic evaluation. , 2013, The Journal of molecular diagnostics : JMD.

[2]  J. Malvehy,et al.  Genetic alterations in RAS‐regulated pathway in acral lentiginous melanoma , 2013, Experimental dermatology.

[3]  J. Guitart,et al.  A Highly Specific and Discriminatory FISH Assay for Distinguishing Between Benign and Malignant Melanocytic Neoplasms , 2012, The American journal of surgical pathology.

[4]  H. Kerl,et al.  Histological and genetic evidence for a variant of superficial spreading melanoma composed predominantly of large nests , 2012, Modern Pathology.

[5]  A. Rademaker,et al.  Distinctive Clinical and Histologic Features in Cutaneous Melanoma With Copy Number Gains in 8q24 , 2012, The American journal of surgical pathology.

[6]  J. Malvehy,et al.  Pigmented Spindle Cell Nevus: Clues for Differentiating It From Spindle Cell Malignant Melanoma. A Comprehensive Survey Including Clinicopathologic, Immunohistochemical, and FISH Studies , 2011, The American journal of surgical pathology.

[7]  Robert L. Sutherland,et al.  Cyclin D as a therapeutic target in cancer , 2011, Nature Reviews Cancer.

[8]  J. Guitart,et al.  Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. , 2010, Archives of dermatology.

[9]  D. Elder,et al.  Melanocytic Tumors of Uncertain Malignant Potential: Results of a Tutorial Held at the XXIX Symposium of the International Society of Dermatopathology in Graz, October 2008 , 2010, The American journal of surgical pathology.

[10]  A. Enk,et al.  Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up , 2010, Modern Pathology.

[11]  N. Kolaitis,et al.  Use of Fluorescence In situ Hybridization (FISH) to Distinguish Intranodal Nevus From Metastatic Melanoma , 2010, The American journal of surgical pathology.

[12]  P. Gerami,et al.  Chromosomal copy number changes supporting the classification of lentiginous junctional melanoma of the elderly as a subtype of melanoma , 2009, Modern Pathology.

[13]  L. Morrison,et al.  Fluorescence In Situ Hybridization (FISH) as an Ancillary Diagnostic Tool in the Diagnosis of Melanoma , 2009, The American journal of surgical pathology.

[14]  G. Mann,et al.  Diagnosis of cutaneous melanocytic tumours by four‐colour fluorescence in situ hybridisation , 2009, Pathology.

[15]  T. Barrett,et al.  Nevi with site‐related atypia: a review of melanocytic nevi with atypical histologic features based on anatomic site , 2008, Journal of cutaneous pathology.

[16]  D. Pinkel,et al.  Distribution and significance of occult intraepidermal tumor cells surrounding primary melanoma. , 2008, The Journal of investigative dermatology.

[17]  Qing Jiang,et al.  Roles of Aurora Kinases in Mitosis and Tumorigenesis , 2007, Molecular Cancer Research.

[18]  J. Shay,et al.  Telomerase therapeutics for cancer: challenges and new directions , 2006, Nature Reviews Drug Discovery.

[19]  F. Shepherd,et al.  Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer , 2006, British Journal of Cancer.

[20]  M. Mihatsch,et al.  Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization , 2006, Virchows Archiv.

[21]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[22]  T. Saida,et al.  Specific dermoscopy patterns and amplifications of the cyclin D1 gene to define histopathologically unrecognizable early lesions of acral melanoma in situ. , 2005, Archives of dermatology.

[23]  H. Koga,et al.  Constitutive activation of the mitogen-activated protein kinase signaling pathway in acral melanomas. , 2005, The Journal of investigative dermatology.

[24]  M. Rao,et al.  Cyclin D1 expression in melanocytic lesions of the skin. , 2005, Annals of diagnostic pathology.

[25]  J. Nesland,et al.  Expression and gene amplification of primary (A, B1, D1, D3, and E) and secondary (C and H) cyclins in colon adenocarcinomas and correlation with patient outcome , 2005, Journal of Clinical Pathology.

[26]  Daniel Pinkel,et al.  Classifying melanocytic tumors based on DNA copy number changes. , 2003, The American journal of pathology.

[27]  D. Pinkel,et al.  Cyclin D1 is a candidate oncogene in cutaneous melanoma. , 2002, Cancer research.

[28]  D. Schadendorf,et al.  Expression of cyclins and cyclin dependent kinases in human benign and malignant melanocytic lesions* , 2001, Journal of clinical pathology.

[29]  T. Godfrey,et al.  Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. , 2000, Cancer research.

[30]  L. Medeiros,et al.  Cyclin D1 overexpression in Spitz nevi: an immunohistochemical study. , 1999, The American Journal of dermatopathology.

[31]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[32]  D. Pinkel,et al.  Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. , 1998, Cancer research.

[33]  P. Leboit,et al.  Pathology and genetics of skin tumours , 2006 .

[34]  Cdm Fletcher,et al.  World Health Organization Classification of Tumours , 2002 .