Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

[1]  R. Vidal,et al.  Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system , 2012, AMB Express.

[2]  K. Bibby,et al.  Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. , 2010, Water research.

[3]  V. M. Oliveira,et al.  Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. , 2010, Journal of microbiology and biotechnology.

[4]  V. M. Oliveira,et al.  Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load. , 2010, Journal of microbiology and biotechnology.

[5]  Prathap Parameswaran,et al.  Focused-Pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. , 2009, Water research.

[6]  J. Bunge,et al.  Microbial community structure in the North Pacific ocean , 2009, The ISME Journal.

[7]  G. R. D. Oliveira,et al.  Activated sludge system microbiology and its relationship with the industrial effluents treatment: the experience of the Cetrel , 2009 .

[8]  Yoshihiro Yamanishi,et al.  E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs , 2009, Bioinform..

[9]  Qunhui Wang,et al.  Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge. , 2009, Bioresource technology.

[10]  A. Fodor,et al.  Molecular Diversity of a North Carolina Wastewater Treatment Plant as Revealed by Pyrosequencing , 2008, Applied and Environmental Microbiology.

[11]  K. Jayachandran,et al.  Biodegradation of phenol , 2008 .

[12]  I. Mandic-Mulec,et al.  Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. , 2008, Water research.

[13]  Karl-Erich Jaeger,et al.  Advances in Recovery of Novel Biocatalysts from Metagenomes , 2008, Journal of Molecular Microbiology and Biotechnology.

[14]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[15]  Alexander Goesmann,et al.  Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant. , 2008, Journal of Biotechnology.

[16]  A. Goesmann,et al.  Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. , 2008, Journal of biotechnology.

[17]  H. Furumai,et al.  Analysis of the phylogenetic diversity of estrone-degrading bacteria in activated sewage sludge using microautoradiography-fluorescence in situ hybridization. , 2008, Systematic and applied microbiology.

[18]  Cristiano Piacsek Borges,et al.  The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater , 2008 .

[19]  S. Agarry,et al.  Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence , 2008 .

[20]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[21]  F. Bushman,et al.  Short pyrosequencing reads suffice for accurate microbial community analysis , 2007, Nucleic acids research.

[22]  G. Casella,et al.  Pyrosequencing enumerates and contrasts soil microbial diversity , 2007, The ISME Journal.

[23]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[24]  Y. Watanabe,et al.  Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance. , 2007, Water research.

[25]  K. Ahn,et al.  Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor , 2007 .

[26]  P. Moulin,et al.  Degradation of synthetic phenol-containing wastewaters by MBR , 2006 .

[27]  M. Merimaa,et al.  Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes , 2006, Archives of Microbiology.

[28]  W. Verstraete,et al.  H2S degradation is reflected by both the activity and composition of the microbial community in a compost biofilter , 2006, Applied Microbiology and Biotechnology.

[29]  P. Phale,et al.  Preferential Utilization of Aromatic Compounds over Glucose by Pseudomonas putida CSV86 , 2006, Applied and Environmental Microbiology.

[30]  J. Sonibare,et al.  Evaluation of microbial systems for bioremediation of petroleum refinery effluents in Nigeria , 2005 .

[31]  B. Chang,et al.  Biodegradation of nonylphenol in sewage sludge. , 2005, Chemosphere.

[32]  J. Wen,et al.  The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis , 2005 .

[33]  J. Handelsman Metagenomics: Application of Genomics to Uncultured Microorganisms , 2004, Microbiology and Molecular Biology Reviews.

[34]  M. Bailey,et al.  N-acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. , 2004, Environmental microbiology.

[35]  H. Yukawa,et al.  Aerobic and Anaerobic Toluene Degradation by a Newly Isolated Denitrifying Bacterium, Thauera sp. Strain DNT-1 , 2004, Applied and Environmental Microbiology.

[36]  James M. Lee,et al.  Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301 , 2004, Biodegradation.

[37]  G. Fuchs,et al.  Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp. , 2004, Archives of Microbiology.

[38]  Mark J. Bailey,et al.  RNA Stable Isotope Probing, a Novel Means of Linking Microbial Community Function to Phylogeny , 2002, Applied and Environmental Microbiology.

[39]  P. Stepnowski,et al.  Enhanced photo-degradation of contaminants in petroleum refinery wastewater. , 2002, Water research.

[40]  E. Stackebrandt,et al.  Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. , 2002, Archives of Microbiology.

[41]  Anthony V. Palumbo,et al.  Spatial and Resource Factors Influencing High Microbial Diversity in Soil , 2002, Applied and Environmental Microbiology.

[42]  G. González,et al.  Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. , 2001, Bioresource technology.

[43]  G. Fuchs,et al.  Genes Involved in Anaerobic Metabolism of Phenol in the Bacterium Thauera aromatica , 2000, Journal of bacteriology.

[44]  T. Kudo,et al.  Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. , 1998, Microbiology.

[45]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[46]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[47]  W. Rulkens,et al.  Environmental engineering series: Wastewater treatment, M. Henze, P. Harremoës, J. de la Cour, E. Arvin. , 1995 .

[48]  J. Ramos,et al.  Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways , 1993, Molecular microbiology.

[49]  S. Harayama,et al.  Functional and evolutionary relationships among diverse oxygenases. , 1992, Annual review of microbiology.

[50]  C. Harwood,et al.  Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris , 1991 .

[51]  V. Torsvik,et al.  High diversity in DNA of soil bacteria , 1990, Applied and environmental microbiology.

[52]  J. E. Grimley,et al.  Under the microscope. , 1976, Journal Of The Macomb Dental Society.