A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance
暂无分享,去创建一个
Roger Temam | Cheng Wang | Roger Samelson | Shouhong Wang | R. Temam | Shouhong Wang | R. Samelson | Cheng Wang
[1] Shouhong Wang,et al. Surface Pressure Poisson Equation Formulation of the Primitive Equations: Numerical Schemes , 2003, SIAM J. Numer. Anal..
[2] Cheng Wang,et al. A Fourth Order Scheme for Incompressible Boussinesq Equations , 2003, J. Sci. Comput..
[3] J. Pedlosky. Geophysical Fluid Dynamics , 1979 .
[4] Cheng Wang. The primitive equations formulated in mean vorticity , 2003 .
[5] Heinz-Otto Kreiss,et al. A fourth-order-accurate difference approximation for the incompressible Navier-Stokes equations☆ , 1994 .
[6] Cheng Wang,et al. Analysis of a fourth order finite difference method for the incompressible Boussinesq equations , 2004, Numerische Mathematik.
[7] 木村 竜治,et al. J. Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag, New York and Heidelberg, 1979, xii+624ページ, 23.5×15.5cm, $39.8. , 1981 .
[8] R. Salmon. The thermocline as an "internal boundary layer" , 1990 .
[9] Alain Colin De Verdieere. On Mean Flow Instabilities within the Planetary Geostrophic Equations , 1986 .
[10] R. Salmon. A simplified linear ocean circulation theory , 1986 .
[11] R. C. Malone,et al. Parallel ocean general circulation modeling , 1992 .
[12] J. Lions,et al. New formulations of the primitive equations of atmosphere and applications , 1992 .
[13] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[14] R. Temam,et al. Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation , 1998 .
[15] Christopher R. Anderson,et al. A High Order Explicit Method for the Computation of Flow About a Circular Cylinder , 1996 .
[16] R. C. Malone,et al. A Reformulation and Implementation of the Bryan-Cox-Semtner Ocean Model on the Connection Machine , 1993 .
[17] E. Titi,et al. Global well‐posedness and finite‐dimensional global attractor for a 3‐D planetary geostrophic viscous model , 2003 .
[18] R. Samelson,et al. A Simple Friction and Diffusion Scheme for Planetary Geostrophic Basin Models , 1997 .
[19] J. G. Charney,et al. THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .
[20] Jian‐Guo Liu,et al. Global weak solution of planetary geostrophic equations with inviscid geostrophic balance , 2006 .
[21] E Weinan,et al. Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .
[22] P. Welander. An Advective Model of the Ocean Thermocline , 1959 .
[23] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[24] Cheng Wang,et al. Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation , 2002, Numerische Mathematik.
[25] Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid , 2004 .
[26] A. Robinson,et al. The Oceanic Thermocline and the Associated Thermohaline Circulation , 1959 .
[27] J. Pedlosky. The Equations for Geostrophic Motion in the Ocean , 1984 .
[28] Jian-Guo Liu,et al. An energy-preserving MAC-Yee scheme for the incompressible MHD equation , 2001 .