Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves

A thermally activated variable attenuator for long-range (low-loss) surface plasmon-polariton (LRSPP) waves is discussed in this paper. The surface plasmon waveguide consists of a thin Au stripe on a thick layer of SiO2, which is covered by a thick layer of index-matched polymer. The structure is optically symmetric near room temperature, supporting an LRSPP. Increased attenuation of the mode occurs upon heating of the Au stripe via the passage of current therein. Heating substantially changes the refractive index of the polymer near the stripe, rendering the structure highly optically asymmetric and cutting off the mode. Thermal modeling results that link the injected current density to the refractive-index perturbation are presented and discussed. Experimental results validate the thermal modeling and demonstrate the operation of the device at a free-space optical wavelength near 1550 nm. The resistivity of the stripe is also measured as a function of the drive current, and the simultaneous use of the stripe as a thermal monitor is discussed and demonstrated

[1]  P. Berini,et al.  Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides , 2006 .

[2]  Seok Ho Song,et al.  Polymeric variable optical attenuator based on long range surface plasmon polaritons , 2006 .

[3]  David R. Smith,et al.  Numerical simulations of long-range plasmons. , 2006, Optics express.

[4]  P. Berini,et al.  Passive integrated optics elements based on long-range surface plasmon polaritons , 2006, Journal of Lightwave Technology.

[5]  Suntak Park,et al.  Vertical coupling of long-range surface plasmon polaritons , 2006 .

[6]  Sergey I. Bozhevolnyi,et al.  Integrated power monitor for long-range surface plasmon polaritons , 2005 .

[7]  Pierre Berini,et al.  Characterization of long-range surface-plasmon-polariton waveguides , 2005 .

[8]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[9]  Pierre Berini,et al.  Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. , 2005, Optics express.

[10]  Sergey I. Bozhevolnyi,et al.  In-line extinction modulator based on long-range surface plasmon polaritons , 2005 .

[11]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[12]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[13]  J. Krenn,et al.  Surface plasmon polaritons in metal stripes and wires , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  G. Gagnon Thermo-optic variable optical attenuators using plasmon-polariton waveguides , 2004 .

[15]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[16]  Sergey I. Bozhevolnyi,et al.  Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths , 2003 .

[17]  Paul S. Ho,et al.  Thermal conductivity and interfacial thermal resistance of polymeric low k films , 2001 .

[18]  P. Berini,et al.  Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics. , 2000, Optics express.

[19]  P. Berini,et al.  Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. , 2000, Optics letters.

[20]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[21]  Yung-Sung Son,et al.  Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers , 1999 .

[22]  F. Horst,et al.  Compact versatile thermooptical space switch based on beam steering by a waveguide array , 1999, IEEE Photonics Technology Letters.

[23]  E. Palik,et al.  The electronic handbook of optical constants of solids , 1999 .

[24]  M. Reichling,et al.  Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscope , 1997 .

[25]  Werner Weber,et al.  Thermal conductivity measurements of thin silicon dioxide films in integrated circuits , 1996 .

[26]  A. S. Oates,et al.  Electromigration transport mechanisms in Al thin‐film conductors , 1996 .

[27]  Werner Weber,et al.  Thermal Conductivity of Thin Silicon Dioxide Films in Integrated Circuits , 1995, ESSDERC '95: Proceedings of the 25th European Solid State Device Research Conference.

[28]  S. Imamura,et al.  Polymer waveguide thermooptic switch with low electric power consumption at 1.3 mu m , 1993, IEEE Photonics Technology Letters.

[29]  P. Flinn,et al.  Scanning probe microscopy studies of electromigration in electroplated Au wires , 1993 .

[30]  Masao Kawachi,et al.  Bridge-Suspended Silica-Waveguide Thermo-Optic Phase Shifter and Its Application to Mach-Zehnder Type Optical Switch , 1990 .

[31]  J. R. Sambles,et al.  The resistivity of thin metal films—Some critical remarks , 1983 .

[32]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[33]  C. Reale,et al.  Optical constants of vacuum deposited thin metal films in the near infrared , 1970 .

[34]  I. J. Sorkin,et al.  A Method of Using Audio Signal-to-Noise Measurements to Obtain Criterion Contours for the Probability Scoring Model for Scoring Voice Communications Reception , 1968 .