Binocular Endoscopic 3-D Scene Reconstruction Using Color and Gradient-Boosted Aggregation Stereo Matching for Robotic Surgery

This paper seeks to develop fast and accurate endoscopic stereo 3-D scene reconstruction for image-guided robotic surgery. Although stereo 3-D reconstruction techniques have been widely discussed over the last few decades, they still remain challenging for endoscopic stereo images with photometric variations, noise, and specularities. To address these limitations, we propose a robust stereo matching framework that constructs cost function on the basis of image gradient and three-channel color information for endoscopic stereo scene 3-D reconstruction. Color information is powerful for textureless stereo pairs and gradient is robust to texture structures under noise and illumination change. We evaluate our stereo matching framework on clinical patient stereoscopic endoscopic sequence data. Experimental results demonstrate that our approach significantly outperforms current available methods. In particular, our framework provided 99.5 % reconstructed density of stereo images compared to other available matching strategies which achieved at the most an 87.6 % reconstruction of the scene.

[1]  Maarten Vergauwen,et al.  A Hierarchical Symmetric Stereo Algorithm Using Dynamic Programming , 2002, International Journal of Computer Vision.

[2]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[3]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[4]  Jian Sun,et al.  Guided Image Filtering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Guang-Zhong Yang,et al.  Real-Time Stereo Reconstruction in Robotically Assisted Minimally Invasive Surgery , 2010, MICCAI.

[7]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[8]  Roberto Manduchi,et al.  Stereo Matching as a Nearest-Neighbor Problem , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Olga Veksler,et al.  Stereo correspondence by dynamic programming on a tree , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Carsten Rother,et al.  Fast Cost-Volume Filtering for Visual Correspondence and Beyond , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[14]  Danail Stoyanov,et al.  Real-Time Dense Stereo Reconstruction Using Convex Optimisation with a Cost-Volume for Image-Guided Robotic Surgery , 2013, MICCAI.

[15]  David J. Hawkes,et al.  Fast Semi-dense Surface Reconstruction from Stereoscopic Video in Laparoscopic Surgery , 2014, IPCAI.

[16]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..