Neuronal Graphs: A Graph Theory Primer for Microscopic, Functional Networks of Neurons Recorded by Calcium Imaging

Connected networks are a fundamental structure of neurobiology. Understanding these networks will help us elucidate the neural mechanisms of computation. Mathematically speaking these networks are `graphs' - structures containing objects that are connected. In neuroscience, the objects could be regions of the brain, e.g. fMRI data, or be individual neurons, e.g. calcium imaging with fluorescence microscopy. The formal study of graphs, graph theory, can provide neuroscientists with a large bank of algorithms for exploring networks. Graph theory has already been applied in a variety of ways to fMRI data but, more recently, has begun to be applied at the scales of neurons, e.g. from functional calcium imaging. In this primer we explain the basics of graph theory and relate them to features of microscopic functional networks of neurons from calcium imaging - neuronal graphs. We explore recent examples of graph theory applied to calcium imaging and we highlight some areas where researchers new to the field could go awry.

[1]  Philipp Hövel,et al.  Comparison of functional connectivity between empirical and randomized structural brain networks , 2016 .

[2]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[3]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[4]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[5]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[6]  Philip E. Bourne,et al.  Ten Simple Rules for a Successful Collaboration , 2007, PLoS Comput. Biol..

[7]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[8]  Reynold Xin,et al.  GraphFrames: an integrated API for mixing graph and relational queries , 2016, GRADES '16.

[9]  Zhao Yang,et al.  A Comparative Analysis of Community Detection Algorithms on Artificial Networks , 2016, Scientific Reports.

[10]  Richard F. Betzel Organizing principles of whole-brain functional connectivity in zebrafish larvae , 2020, Network Neuroscience.

[11]  Aaron Clauset,et al.  Scale-free networks are rare , 2018, Nature Communications.

[12]  E. Todeva Networks , 2007 .

[13]  Itia A. Favre-Bulle,et al.  Brain-Wide Mapping of Water Flow Perception in Zebrafish , 2020, The Journal of Neuroscience.

[14]  J. Gold,et al.  On the nature and use of models in network neuroscience , 2018, Nature Reviews Neuroscience.

[15]  Christian Staudt,et al.  NetworKit: A tool suite for large-scale complex network analysis , 2014, Network Science.

[16]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[17]  F. Vecchio,et al.  Connectome: Graph theory application in functional brain network architecture , 2017, Clinical neurophysiology practice.

[18]  Lilach Avitan,et al.  Emergence of spontaneous assembly activity in developing neural networks without afferent input , 2018, PLoS Comput. Biol..

[19]  Tapani Raiko,et al.  International Conference on Learning Representations (ICLR) , 2016 .

[20]  Edward T. Bullmore,et al.  Small-World Brain Networks Revisited , 2016, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[21]  Reynold Xin,et al.  GraphX: Graph Processing in a Distributed Dataflow Framework , 2014, OSDI.

[22]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[23]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[24]  A. Clauset,et al.  Scale invariance in road networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Zachary P. Neal,et al.  Making Big Communities Small: Using Network Science to Understand the Ecological and Behavioral Requirements for Community Social Capital , 2015, American journal of community psychology.

[26]  Xingyi Zhang,et al.  Overlapping Community Detection based on Network Decomposition , 2016, Scientific Reports.

[27]  Angelo Bifone,et al.  Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold , 2017, Front. Neurosci..

[28]  A. Wanner,et al.  Whitening of odor representations by the wiring diagram of the olfactory bulb , 2019, Nature Neuroscience.

[29]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Ilgren Spontaneous , 2020, Encyclopedia of Personality and Individual Differences.

[31]  Erik Smedler,et al.  Network analysis of time-lapse microscopy recordings , 2014, Front. Neural Circuits.

[32]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[33]  Zhu-Qing Jiao,et al.  Effective connectivity analysis of fMRI data based on network motifs , 2013, The Journal of Supercomputing.

[34]  Lilach Avitan,et al.  Detecting neural assemblies in calcium imaging data , 2018, BMC Biology.

[35]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[36]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[37]  Roman Garnett,et al.  D-VAE: A Variational Autoencoder for Directed Acyclic Graphs , 2019, NeurIPS.

[38]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[39]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[40]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[41]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[42]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[43]  Michael Häusser,et al.  Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo , 2014, Nature Methods.

[44]  Herwig Baier,et al.  Light-sheet imaging and graph analysis of antidepressant action in the larval zebrafish brain network , 2019, bioRxiv.

[45]  E. Bullmore,et al.  Reconciling abnormalities of brain network structure and function in schizophrenia , 2015, Current Opinion in Neurobiology.

[46]  Douglas J. Klein,et al.  Centrality measure in graphs , 2010 .

[47]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[48]  Alexander G. Fletcher,et al.  Ten Simple Rules for a Successful Cross-Disciplinary Collaboration , 2015, PLoS Comput. Biol..

[49]  Edward T. Bullmore,et al.  Low-dimensional morphospace of topological motifs in human fMRI brain networks , 2018, Network Neuroscience.

[50]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[51]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[52]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[53]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Spectral methods for graph clustering - A survey , 2011, Eur. J. Oper. Res..

[54]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[55]  Boleslaw K. Szymanski,et al.  Overlapping community detection in networks: The state-of-the-art and comparative study , 2011, CSUR.

[56]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data: Methods and Models , 2009 .

[58]  Zhiyuan Liu,et al.  Graph Neural Networks: A Review of Methods and Applications , 2018, AI Open.

[59]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[60]  Germán Sumbre,et al.  Spontaneous Neuronal Network Dynamics Reveal Circuit’s Functional Adaptations for Behavior , 2015, Neuron.

[61]  Bastian Cheng,et al.  Altered topology of large-scale structural brain networks in chronic stroke , 2019, Brain communications.

[62]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[63]  Cao Xiao,et al.  Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders , 2018, NeurIPS.

[64]  Hisashi Q. Higuchi On the nature of , 1999 .

[65]  Sarah Feldt Muldoon,et al.  Small-World Propensity and Weighted Brain Networks , 2016, Scientific Reports.

[66]  E. Poovammal,et al.  An Analysis of Overlapping Community Detection Algorithms in Social Networks , 2016 .

[67]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[68]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[69]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[70]  H. Eugene Stanley,et al.  Social networks (communication arising): Sexual contacts and epidemic thresholds , 2003, Nature.

[71]  Olaf Sporns,et al.  Graph theory methods: applications in brain networks , 2018, Dialogues in clinical neuroscience.

[72]  B. Kogut,et al.  The Small World of Germany and the Durability of National Networks , 2001, American Sociological Review.

[73]  Katherine C. Wood,et al.  Correction: Stability of spontaneous, correlated activity in mouse auditory cortex , 2018, bioRxiv.

[74]  Waldemar Karwowski,et al.  Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review , 2019, Front. Neurosci..

[75]  Jure Leskovec,et al.  GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models , 2018, ICML.

[76]  Arseny S Khakhalin,et al.  Graph analysis of looming-selective networks in the tectum, and its replication in a simple computational model , 2019, bioRxiv.

[77]  Ian Davidson,et al.  Flexible constrained spectral clustering , 2010, KDD.

[78]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[79]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[80]  Tiago P. Peixoto,et al.  The graph-tool python library , 2014 .

[81]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[82]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[83]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[84]  Itia A. Favre-Bulle,et al.  Altered brain-wide auditory networks in a zebrafish model of fragile X syndrome , 2020, BMC biology.

[85]  Michael J. Franklin,et al.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.

[86]  Christoph E Schreiner,et al.  Coordinated neuronal ensembles in primary auditory cortical columns , 2018, eLife.

[87]  L. Amaral,et al.  Sexual contacts and epidemic thresholds , 2003 .

[88]  Edward T. Bullmore,et al.  Fundamentals of Brain Network Analysis , 2016 .

[89]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[90]  D. Kaplan,et al.  Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks , 2020, iScience.

[91]  Danielle S. Bassett,et al.  A multilayer network model of neuron-astrocyte populations in vitro reveals mGluR5 inhibition is protective following traumatic injury , 2019, bioRxiv.

[92]  Wei Wang,et al.  Accurate Classification of Protein Structural Families Using Coherent Subgraph Analysis , 2003, Pacific Symposium on Biocomputing.

[93]  David L. Kaplan,et al.  Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks , 2020, iScience.

[94]  Pengcheng Zhou,et al.  CaImAn an open source tool for scalable calcium imaging data analysis , 2019, eLife.

[95]  Jordi Soriano,et al.  Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures , 2013, Front. Neural Circuits.

[96]  Louis K. Scheffer Graph Properties of the Adult Drosophila Central Brain , 2020, bioRxiv.

[97]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[98]  Gregory Bodwin,et al.  On the Structure of Unique Shortest Paths in Graphs , 2018, SODA.

[99]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[100]  Liam Paninski,et al.  Analysis of functional imaging data at single-cellular resolution ∗ , 2018 .

[101]  Geoffrey J. Goodhill,et al.  Spontaneous Activity in the Zebrafish Tectum Reorganizes over Development and Is Influenced by Visual Experience , 2017, Current Biology.

[102]  Geoffrey J. Goodhill,et al.  Altered brain-wide auditory networks in fmr1-mutant larval zebrafish , 2019, bioRxiv.

[103]  Petter Holme,et al.  Rare and everywhere: Perspectives on scale-free networks , 2019, Nature Communications.

[104]  Danielle S Bassett,et al.  Stability of spontaneous, correlated activity in mouse auditory cortex , 2018, bioRxiv.

[105]  B. Uzzi,et al.  Collaboration and Creativity: The Small World Problem1 , 2005, American Journal of Sociology.

[106]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data , 2009 .

[107]  Darren A. Narayan,et al.  Global efficiency of graphs , 2015, AKCE Int. J. Graphs Comb..

[108]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[109]  Theo Geisel,et al.  Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals , 2012, PLoS Comput. Biol..

[110]  Paul J. Laurienti,et al.  The Ubiquity of Small-World Networks , 2011, Brain Connect..

[111]  Zachary P. Neal,et al.  How small is it? Comparing indices of small worldliness , 2017, Network Science.

[112]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..