A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.

Riboswitches that sense S-adenosylmethionine (SAM) are widely distributed throughout a variety of bacterial lineages. Four classes of SAM-binding riboswitches have been reported to date, constituting the most diverse collection of riboswitch classes that sense the same compound. Three of these classes, termed SAM-I, SAM-II, and SAM-III represent unique structures that form distinct binding pockets for the ligand. SAM-IV riboswitches carry different conserved sequence and structural features compared to other SAM riboswitches, but nucleotides and substructures corresponding to the ligand binding pocket are identical to SAM-I aptamers. In this article, we describe a fifth class of SAM binding aptamer, which we have termed SAM-V. SAM-V was discovered by analyzing GC-rich intergenic regions preceding metabolic genes in the marine alpha-proteobacterium "Candidatus Pelagibacter ubique." Although the motif is nearly unrepresented in cultured bacteria whose genomes have been completely sequenced, SAM-V is prevalent in marine metagenomic sequences. The consensus sequence and structure of SAM-V show some similarities to that of the SAM-II riboswitch, and it is likely that the two aptamers form similar ligand binding pockets. In addition, we identified numerous examples of a tandem SAM-II/SAM-V aptamer architecture. In this arrangement, the SAM-II aptamer is always positioned 5' of the SAM-V aptamer and the SAM-II aptamer is followed by a predicted intrinsic transcription terminator stem. The SAM-V aptamer, however, appears to use a ribosome binding site occlusion mechanism for genetic regulation. This tandem riboswitch arrangement exhibits an architecture that can potentially control both the transcriptional and translational stages of gene expression.

[1]  Zasha Weinberg,et al.  A Computational Pipeline for High- Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes , 2007, PLoS Comput. Biol..

[2]  T. Henkin,et al.  S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA , 2007, Proceedings of the National Academy of Sciences.

[3]  Stephen J. Callister,et al.  Proteomic Analysis of Stationary Phase In , 2008 .

[4]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[5]  R. Breaker,et al.  The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.

[6]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[7]  R. Breaker,et al.  Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. , 2008, Molecular cell.

[8]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[9]  R. Breaker,et al.  Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. , 2009, Environmental microbiology.

[10]  R. Breaker,et al.  Molecular-recognition characteristics of SAM-binding riboswitches. , 2006, Angewandte Chemie.

[11]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[12]  R R Breaker,et al.  Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. , 2001, RNA.

[13]  R. Micura,et al.  Ligand‐Induced Folding of the Adenosine Deaminase A‐Riboswitch and Implications on Riboswitch Translational Control , 2007, Chembiochem : a European journal of chemical biology.

[14]  R. Breaker,et al.  Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.

[15]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[16]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[17]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[18]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[19]  Zasha Weinberg,et al.  Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique' , 2009, BMC Genomics.

[20]  Tina M. Henkin,et al.  Natural Variability in S-Adenosylmethionine (SAM)-Dependent Riboswitches: S-Box Elements in Bacillus subtilis Exhibit Differential Sensitivity to SAM In Vivo and In Vitro , 2007, Journal of bacteriology.

[21]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[23]  R. Batey,et al.  Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.

[24]  Zasha Weinberg,et al.  The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. , 2008, RNA.

[25]  M. Grillo,et al.  S-adenosylmethionine and its products , 2008, Amino Acids.

[26]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[27]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[28]  R. Breaker,et al.  Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs[W][OA] , 2007, The Plant Cell Online.

[29]  M. Gelfand,et al.  Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. , 2004, Nucleic acids research.

[30]  Jeffrey W. Roberts,et al.  Mechanism of intrinsic transcription termination and antitermination. , 1999, Science.

[31]  R. Breaker,et al.  Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.

[32]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[33]  T. Henkin,et al.  The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.

[34]  R. Breaker,et al.  Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[35]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Batey,et al.  Mix-and-match riboswitches. , 2006, ACS chemical biology.

[37]  R. Montange,et al.  Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.

[38]  T. Henkin,et al.  Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism , 2008, Nature Structural &Molecular Biology.

[39]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[40]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[41]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[42]  T. McMeekin,et al.  Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. , 1998, Microbiology.

[43]  R R Breaker,et al.  Relationship between internucleotide linkage geometry and the stability of RNA. , 1999, RNA.

[44]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[45]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.