A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
暂无分享,去创建一个
R. Breaker | M. Meyer | T. Ames | Ronald R Breaker | Michelle M Meyer | Tyler D Ames | Elena Poiata | Elena Poiata
[1] Zasha Weinberg,et al. A Computational Pipeline for High- Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes , 2007, PLoS Comput. Biol..
[2] T. Henkin,et al. S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA , 2007, Proceedings of the National Academy of Sciences.
[3] Stephen J. Callister,et al. Proteomic Analysis of Stationary Phase In , 2008 .
[4] R. Breaker,et al. Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.
[5] R. Breaker,et al. The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.
[6] Jeffrey E. Barrick,et al. Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.
[7] R. Breaker,et al. Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. , 2008, Molecular cell.
[8] Ali Nahvi,et al. Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.
[9] R. Breaker,et al. Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. , 2009, Environmental microbiology.
[10] R. Breaker,et al. Molecular-recognition characteristics of SAM-binding riboswitches. , 2006, Angewandte Chemie.
[11] D. Crothers,et al. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.
[12] R R Breaker,et al. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. , 2001, RNA.
[13] R. Micura,et al. Ligand‐Induced Folding of the Adenosine Deaminase A‐Riboswitch and Implications on Riboswitch Translational Control , 2007, Chembiochem : a European journal of chemical biology.
[14] R. Breaker,et al. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.
[15] Jeffrey E. Barrick,et al. The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.
[16] R. Montange,et al. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.
[17] T. Henkin,et al. The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.
[18] Zasha Weinberg,et al. A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.
[19] Zasha Weinberg,et al. Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique' , 2009, BMC Genomics.
[20] Tina M. Henkin,et al. Natural Variability in S-Adenosylmethionine (SAM)-Dependent Riboswitches: S-Box Elements in Bacillus subtilis Exhibit Differential Sensitivity to SAM In Vivo and In Vitro , 2007, Journal of bacteriology.
[21] T. Henkin,et al. Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[22] R. Breaker,et al. Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.
[23] R. Batey,et al. Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.
[24] Zasha Weinberg,et al. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. , 2008, RNA.
[25] M. Grillo,et al. S-adenosylmethionine and its products , 2008, Amino Acids.
[26] Adam Roth,et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.
[27] Jeffrey E. Barrick,et al. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.
[28] R. Breaker,et al. Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs[W][OA] , 2007, The Plant Cell Online.
[29] M. Gelfand,et al. Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. , 2004, Nucleic acids research.
[30] Jeffrey W. Roberts,et al. Mechanism of intrinsic transcription termination and antitermination. , 1999, Science.
[31] R. Breaker,et al. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.
[32] M. Noordewier,et al. Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.
[33] T. Henkin,et al. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.
[34] R. Breaker,et al. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.
[35] Vitaly Epshtein,et al. The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[36] R. Batey,et al. Mix-and-match riboswitches. , 2006, ACS chemical biology.
[37] R. Montange,et al. Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.
[38] T. Henkin,et al. Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism , 2008, Nature Structural &Molecular Biology.
[39] Shane J. Neph,et al. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.
[40] A. Halpern,et al. The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.
[41] Ronald R. Breaker,et al. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.
[42] T. McMeekin,et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. , 1998, Microbiology.
[43] R R Breaker,et al. Relationship between internucleotide linkage geometry and the stability of RNA. , 1999, RNA.
[44] S. Giovannoni,et al. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.
[45] Ali Nahvi,et al. An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.