Synthesis and evaluation of linear motion transitions

This article develops methods for determining visually appealing motion transitions using linear blending. Motion transitions are segues between two sequences of animation, and are important components for generating compelling animation streams in virtual environments and computer games. Methods involving linear blending are studied because of their efficiency, computational speed, and widespread use. Two methods of transition specification are detailed, center-aligned and start-end transitions. First, we compute a set of optimal weights for an underlying cost metric used to determine the transition points. We then evaluate the optimally weighted cost metric for generalizability, appeal, and robustness through a cross-validation and user study. Next, we develop methods for computing visually appealing blend lengths for two broad categories of motion. We empirically evaluate these results through user studies. Finally, we assess the importance of these techniques by determining the minimum sensitivity of viewers to transition durations, the just noticeable difference, for both center-aligned and start-end specifications.

[1]  G. B. Wetherill,et al.  SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. , 1965, The British journal of mathematical and statistical psychology.

[2]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[3]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[4]  David G. Stork,et al.  Pattern Classification , 1973 .

[5]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[6]  J. Cutting,et al.  Recognizing the sex of a walker from a dynamic point-light display , 1977 .

[7]  Philip E. Gill,et al.  Practical optimization , 1981 .

[8]  R. Mccall Fundamental Statistics for Behavioral Sciences , 1986 .

[9]  S. Sogon,et al.  Sex differences in emotion recognition by observing body movements: A case of American students. , 1987 .

[10]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[11]  L. J. Stricker Fundamental Statistics for Behavioral Sciences (5th ed.). , 1991 .

[12]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[13]  Ken Perlin,et al.  Real Time Responsive Animation with Personality , 1995, IEEE Trans. Vis. Comput. Graph..

[14]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[15]  Michiel van de Panne,et al.  Motion synthesis by example , 1996 .

[16]  Michael F. Cohen,et al.  Efficient generation of motion transitions using spacetime constraints , 1996, SIGGRAPH.

[17]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[18]  C. Michaels,et al.  Higher order and lower order variables in the visual perception of relative pulling force. , 1998, Journal of experimental psychology. Human perception and performance.

[19]  Jessica K. Hodgins,et al.  Perception of Human Motion With Different Geometric Models , 1998, IEEE Trans. Vis. Comput. Graph..

[20]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[21]  Alberto Menache,et al.  Understanding Motion Capture for Computer Animation and Video Games , 1999 .

[22]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[23]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[24]  Richard Szeliski,et al.  Video textures , 2000, SIGGRAPH.

[25]  Heiko Hecht,et al.  Psychological Evidence for Unconscious Processing of Detail in Real-time Animation of Multiple Characters , 2000, Comput. Animat. Virtual Worlds.

[26]  Andrew Witkin,et al.  Believable automatically synthesized motion by knowledge-enhanced motion transformation , 2000 .

[27]  Michael Gleicher,et al.  Comparing Constraint-Based Motion Editing Methods , 2001, Graph. Model..

[28]  Armin Bruderlin,et al.  Perceiving affect from arm movement , 2001, Cognition.

[29]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[30]  Mark Mizuguchi,et al.  Data driven motion transitions for interactive games , 2001, Eurographics.

[31]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[32]  Christoph Bregler,et al.  Motion capture assisted animation: texturing and synthesis , 2002, ACM Trans. Graph..

[33]  Lucas Kovar,et al.  Footskate cleanup for motion capture editing , 2002, SCA '02.

[34]  Michael J. Black,et al.  Implicit Probabilistic Models of Human Motion for Synthesis and Tracking , 2002, ECCV.

[35]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[36]  Sung Yong Shin,et al.  On-line locomotion generation based on motion blending , 2002, SCA '02.

[37]  David A. Forsyth,et al.  Motion synthesis from annotations , 2003, ACM Trans. Graph..

[38]  Nancy S. Pollard,et al.  Perceptual metrics for character animation: sensitivity to errors in ballistic motion , 2003, ACM Trans. Graph..

[39]  Hyun Joon Shin,et al.  Snap-together motion: assembling run-time animations , 2003, I3D '03.

[40]  Lucas Kovar,et al.  Flexible automatic motion blending with registration curves , 2003, SCA '03.

[41]  Thanh Giang,et al.  Evaluating the visual fidelity of physically based animations , 2003, ACM Trans. Graph..

[42]  Bobby Bodenheimer,et al.  An evaluation of a cost metric for selecting transitions between motion segments , 2003, SCA '03.

[43]  Bobby Bodenheimer,et al.  Computing the duration of motion transitions: an empirical approach , 2004, SCA '04.

[44]  Ronald A. Rensink,et al.  Obscuring length changes during animated motion , 2004, ACM Trans. Graph..

[45]  Bruno Arnaldi,et al.  Synchronization for dynamic blending of motions , 2004, SCA '04.

[46]  Ronald A. Rensink,et al.  Obscuring length changes during animated motion , 2004, SIGGRAPH 2004.

[47]  Neil A. Macmillan,et al.  Detection theory: A user's guide, 2nd ed. , 2005 .

[48]  Jessica K. Hodgins,et al.  Analyzing the physical correctness of interpolated human motion , 2005, SCA '05.

[49]  Victor B. Zordan,et al.  Dynamic response for motion capture animation , 2005, SIGGRAPH 2005.

[50]  David A. Forsyth,et al.  Pushing people around , 2005, SCA '05.

[51]  Victor B. Zordan,et al.  Dynamic response for motion capture animation , 2005, SIGGRAPH '05.

[52]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[53]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.