Open and closed domains in the mouse genome are configured as 10‐nm chromatin fibres

[1]  Achilleas S Frangakis,et al.  Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30‐nm chromatin structure , 2012, The EMBO journal.

[2]  D. Bazett-Jones,et al.  A view of the chromatin landscape. , 2012, Micron.

[3]  D. Bazett-Jones,et al.  Living without 30nm chromatin fibers. , 2011, Trends in biochemical sciences.

[4]  N. Gilbert,et al.  Analysis of Active and Inactive X Chromosome Architecture Reveals the Independent Organization of 30 nm and Large-Scale Chromatin Structures , 2010, Molecular cell.

[5]  Kazuhiro Maeshima,et al.  Chromatin structure: does the 30-nm fibre exist in vivo? , 2010, Current opinion in cell biology.

[6]  J. Rossant,et al.  Global Chromatin Architecture Reflects Pluripotency and Lineage Commitment in the Early Mouse Embryo , 2010, PloS one.

[7]  J. Hansen,et al.  Multifunctionality of the linker histones: an emerging role for protein-protein interactions , 2010, Cell Research.

[8]  D. Bazett-Jones,et al.  Changes in chromatin fiber density as a marker for pluripotency. , 2010, Cold Spring Harbor Symposia on Quantitative Biology.

[9]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[10]  Colin Logie,et al.  Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber , 2009, Nature Structural &Molecular Biology.

[11]  D. Bazett-Jones,et al.  Electron spectroscopic imaging of the nuclear landscape. , 2009, Methods in molecular biology.

[12]  Achilleas S Frangakis,et al.  Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ , 2008, Proceedings of the National Academy of Sciences.

[13]  Job Dekker,et al.  Mapping in Vivo Chromatin Interactions in Yeast Suggests an Extended Chromatin Fiber with Regional Variation in Compaction* , 2008, Journal of Biological Chemistry.

[14]  J. Hayes,et al.  The H4 Tail Domain Participates in Intra- and Internucleosome Interactions with Protein and DNA during Folding and Oligomerization of Nucleosome Arrays , 2008, Molecular and Cellular Biology.

[15]  A. Belmont,et al.  The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure , 2008, Journal of Cell Science.

[16]  M. Aronova,et al.  Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). , 2007, Journal of structural biology.

[17]  D. Tremethick,et al.  Higher-Order Structures of Chromatin: The Elusive 30 nm Fiber , 2007, Cell.

[18]  Chao Yang,et al.  SPARX, a new environment for Cryo-EM image processing. , 2007, Journal of structural biology.

[19]  Louise Fairall,et al.  EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[21]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[22]  Nick Gilbert,et al.  Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers , 2004, Cell.

[23]  G. Almouzni,et al.  Mouse centric and pericentric satellite repeats form distinct functional heterochromatin , 2004, The Journal of cell biology.

[24]  G. Dellaire,et al.  Correlative light and electron spectroscopic imaging of chromatin in situ. , 2004, Methods in enzymology.

[25]  Leann Tilley,et al.  Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum‐infected human erythrocytes , 2001, The EMBO journal.

[26]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[27]  A. Belmont,et al.  Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure , 1994, The Journal of cell biology.

[28]  C. Woodcock Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length , 1994, The Journal of cell biology.

[29]  D A Agard,et al.  The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon , 1994, The Journal of cell biology.

[30]  D. Bazett-Jones Electron spectroscopic imaging of chromatin and other nucleoprotein complexes. , 1992, Electron microscopy reviews.

[31]  J. R. Paulson,et al.  Low angle x-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes , 1983, The Journal of cell biology.

[32]  D. Bazett-Jones,et al.  Phosphorus distribution in the nucleosome. , 1981, Science.

[33]  A Klug,et al.  Solenoidal model for superstructure in chromatin. , 1976, Proceedings of the National Academy of Sciences of the United States of America.