Triaxiality in excited states of lanthanide and actinide even–even nuclei

The energy levels of excited states of ground state, β- and γ-bands of the lanthanide and actinide even–even nuclei have been studied within the Davydov–Chaban model (for three different types of the potential energy of the β-deformations) and approximations for a small and free triaxiality. It is shown that the approximation with a free triaxiality better describes the spectrum of the excited collective states for considered nuclei.

[1]  D. Lenis,et al.  Exactly separable version of the Bohr Hamiltonian with the Davidson potential , 2007, HNPS Proceedings.

[2]  I. Boztosun,et al.  A long sought result: Closed analytical solutions of the Bohr Hamiltonian with the Morse potential , 2008, HNPS Proceedings.

[3]  M. S. Nadirbekov,et al.  Excited collective states of heavy even-even nuclei , 2013 .

[4]  D. Lenis,et al.  Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential , 2011, 1308.1025.

[5]  G. Thiamová The IBM description of triaxial nuclei , 2010 .

[6]  M. Caprio Phonon and multi-phonon excitations in rotational nuclei by exact diagonalization of the Bohr Hamiltonian , 2009, 0902.0022.

[7]  L. Fortunato,et al.  Solution of the Bohr Hamiltonian for soft triaxial nuclei , 2006, nucl-th/0607052.

[8]  L. Fortunato,et al.  Solution of the Bohr Hamiltonian for a periodic potential with minimum at γ=π/6 , 2006 .

[9]  M. Ermamatov,et al.  Ground State and β-VIBRATIONAL Bands of Axial-Symmetric Superheavy Nuclei , 2005 .

[10]  R. Casten Structural Evolution in Nuclei: The Importance of a Systematic Perspective , 2005 .

[11]  L. Fortunato Solutions of the Bohr Hamiltonian, a compendium , 2004, nucl-th/0411087.

[12]  D. Lenis,et al.  Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure , 2003, nucl-th/0312121.

[13]  L. Fortunato,et al.  New analytic solutions of the collective Bohr Hamiltonian for a β-soft, γ-soft axial rotor , 2003, nucl-th/0312080.

[14]  Ahmad,et al.  Rotational bands with identical transition energies in actinide nuclei. , 1991, Physical review. C, Nuclear physics.

[15]  P. Tikkanen,et al.  TRANSITION PROBABILITY FROM THE GROUND TO THE FIRST-EXCITED 2+ STATE OF EVEN–EVEN NUCLIDES , 2001 .

[16]  J. Elliott,et al.  A soluble γ-unstable hamiltonian , 1986 .

[17]  A. M. Friedman,et al.  Survey of single-particle states in the mass region A>228 , 1977 .

[18]  R. L. Robinson,et al.  E2 and E4 Transition Moments and Equilibrium Deformations in the Actinide Nuclei , 1973 .

[19]  G. G. Ékle Algebraic properties of the Dirac equation , 1972 .

[20]  R. L. Robinson,et al.  Precise Coulomb ExcitationB(E2)Values for First2+States of the Actinide Nuclei , 1971 .

[21]  L. Grodzins The uniform behaviour of electric quadrupole transition probabilities from first 2+ states in even-even nuclei☆ , 1962 .

[22]  A. Davydov,et al.  Rotation-vibration interaction in non-axial even nuclei , 1960 .

[23]  L. Wilets,et al.  SURFACE OSCILLATIONS IN EVEN-EVEN NUCLEI , 1956 .