Synchronization of three dimensional chaotic systems via a single state feedback

Abstract This paper investigates the synchronization of three dimensional chaotic systems by extending our previous method for chaos stabilization, and proposes a novel simple adaptive feedback controller for chaos synchronization. In comparison with previous methods, the present controller contains single state feedback. To our knowledge, the above controller is the simplest control scheme for synchronizing the three dimensional chaotic systems. The results are validated using numerical simulations.

[1]  Carroll,et al.  Desynchronization by periodic orbits. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[3]  Wenguang Yu,et al.  Stabilization of three-dimensional chaotic systems via single state feedback controller ☆ , 2010 .

[4]  Wei Lin,et al.  Adaptive chaos control and synchronization in only locally Lipschitz systems , 2008 .

[5]  Rongwei Guo,et al.  Modification for collection of master–slave synchronized chaotic systems , 2009 .

[6]  Sung Tae Jung,et al.  Adaptive H∞ synchronization for uncertain chaotic systems with external disturbance , 2010 .

[7]  Wei Zhang,et al.  Chaos control and synchronization of unified chaotic systems via linear control , 2009 .

[8]  Sara Dadras,et al.  A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors , 2009 .

[9]  Debin Huang,et al.  A Simple Adaptive-feedback Controller for Identical Chaos Synchronization , 2022 .

[10]  Rongwei Guo,et al.  Identifying parameter by identical synchronization between different systems. , 2004, Chaos.

[11]  U E Vincent,et al.  Synchronization of chaos in RCL-shunted Josephson junction using a simple adaptive controller , 2009 .

[12]  Rongwei Guo,et al.  Chaotic synchronization based on Lie derivative method , 2005 .

[13]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[14]  Rongwei Guo A simple adaptive controller for chaos and hyperchaos synchronization , 2008 .

[15]  Keisuke Ito,et al.  Chaos in the Rikitake two-disc dynamo system , 1980 .

[16]  Lakshmanan,et al.  Drive-response scenario of chaos synchronization in identical nonlinear systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[18]  Lee-Ming Cheng,et al.  Synchronization of spatiotemporal chaos with positive conditional Lyapunov exponents , 1997 .

[19]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[20]  S. Bowong Stability analysis for the synchronization of chaotic systems with different order: application to secure communications , 2004 .

[21]  Corron,et al.  Controlling chaos with simple limiters , 2000, Physical review letters.

[22]  J García-Ojalvo,et al.  Spatiotemporal communication with synchronized optical chaos. , 2000, Physical review letters.