Geology of the InSight landing site on Mars
暂无分享,去创建一个
Ernst Hauber | J. A. Grant | Rachel Hausmann | Catherine M. Weitz | Constantinos Charalambous | Veronique Ansan | Sylvain Piqueux | Ingrid Daubar | Maria E. Banks | J. Grant | C. Weitz | M. Golombek | W. Folkner | T. Parker | J. Maki | J. Garvin | W. Banerdt | V. Ansan | S. Smrekar | E. Millour | F. Forget | A. Spiga | F. Calef | E. Hauber | T. Spohn | S. Piqueux | N. Murdoch | M. Grott | S. Wilson | C. Newman | P. Lognonné | S. Rodriguez | M. Banks | S. L. Maistre | N. Warner | I. Daubar | C. Charalambous | F. Forget | D. Banfield | C. Perrin | N. Warner | N. Williams | A. DeMott | M. Kopp | H. Lethcoe-Wilson | L. Berger | E. Marteau | A. Trussell | S. Le Maistre | N. Mueller | C. Perrin | H. Abarca | R. Deen | N. Ruoff | M. Baker | P. Lognonné | Matthew Golombek | Nicholas H. Warner | John A. Grant | Nathan R. Williams | Sharon A. Wilson | Timothy Parker | Eloise Marteau | Nils Mueller | W.T. Pike | Alyssa DeMott | Megan A. Kopp | Heather A. Lethcoe-Wilson | Lauren Berger | Mariah M. Baker | James Garvin | S. Smrekar | W. Pike | J. Grant | W. Pike | S. Rodriguez | Rachel Hausmann | N. S. Mueller | C. Weitz | Nils Mueller | C. Vrettos | J. Hall | R. Hausmann | T. Parker | P. Andres
[1] P. Rosin. The Laws Governing the Fineness of Powdered Coal , 1933 .
[2] J. Gilvarry,et al. Fracture of Brittle Solids. II. Distribution Function for Fragment Size in Single Fracture (Experimental) , 1961 .
[3] R. L. Duncombe,et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites , 1980 .
[4] W. Hartmann. Does crater “saturation equilibrium” occur in the solar system? , 1984 .
[5] W. K. Brown,et al. Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash , 1989 .
[6] D. Turcotte. Fractals and Chaos in Geology and Geophysics , 1992 .
[7] W. K. Brown,et al. Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions , 1995 .
[8] E. Standish,et al. Martian precession and rotation from Viking lander range data , 1997 .
[9] M. Golombek,et al. Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .
[10] A. McEwen,et al. Repeated Aqueous Flooding from the Cerberus Fossae: Evidence for Very Recently Extant, Deep Groundwater on Mars , 2002 .
[11] J F Bell,et al. Surficial Deposits at Gusev Crater Along Spirit Rover Traverses , 2004, Science.
[12] K Davis,et al. Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.
[13] D. Ming,et al. Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.
[14] J. Grant,et al. Crater gradation in Gusev crater and Meridiani Planum, Mars , 2006 .
[15] Rebecca Castano,et al. Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .
[16] Raymond E. Arvidson,et al. In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .
[17] Raymond E. Arvidson,et al. Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .
[18] J. Vaucher,et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism , 2009 .
[19] M. Mellon,et al. Geomorphic and geologic settings of the Phoenix Lander mission landing site , 2009 .
[20] R. Anderson,et al. Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs , 2011 .
[21] Raymond E. Arvidson,et al. Explosive erosion during the Phoenix landing exposes subsurface water on Mars , 2011 .
[22] A. Huertas,et al. Detection and Characterization of Rocks and Rock Size-Frequency Distributions at the Final Four Mars Science Laboratory Landing Sites , 2012 .
[23] J. Wookey,et al. Estimates of seismic activity in the Cerberus Fossae region of Mars , 2013 .
[24] Constantinos Charalambous. On the evolution of particle fragmentation with applications to planetary surfaces , 2014 .
[25] L. Sebastien. InSight coordinates determination from direct-to-Earth radio-tracking and Mars topography model , 2016 .
[26] M. Golombek,et al. An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site , 2017, Space Science Reviews.
[27] J. Tromp,et al. Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator , 2017 .
[28] M. Golombek,et al. Radar-Derived Properties of the InSight Landing Site in Western Elysium Planitia on Mars , 2016, Space Science Reviews.
[29] K. Gwinner,et al. Selection of the InSight Landing Site , 2017 .
[30] R. Kirk,et al. Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission , 2017 .
[31] D. Breuer,et al. The Heat Flow and Physical Properties Package (HP3) for the InSight Mission , 2018, Space Science Reviews.
[32] M. Golombek,et al. Pre-mission InSights on the Interior of Mars , 2019, Space Science Reviews.
[33] Sami W. Asmar,et al. The Rotation and Interior Structure Experiment on the InSight Mission to Mars , 2018, Space Science Reviews.
[34] W. B. Banerdt,et al. The Color Cameras on the InSight Lander , 2018, Space Science Reviews.
[35] M. Golombek,et al. The Origin of Sand on Mars , 2018 .
[36] Robert G. Deen,et al. InSight Mars Lander Robotics Instrument Deployment System , 2018, Space Science Reviews.
[37] J. Grant,et al. GEOMORPHOLOGY AND ORIGIN OF HOMESTEAD HOLLOW , THE LANDING LOCATION OF THE INSIGHT LANDER ON MARS , 2018 .
[38] A. Trebi-Ollennu,et al. Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.
[39] Roland Martin,et al. Atmospheric Science with InSight , 2018, Space Science Reviews.
[40] Jason R. Brown,et al. Possible Evidence for Variation in Magnitude for Marsquakes From Fallen Boulder Populations, Grjota Valles, Mars , 2019, Journal of Geophysical Research: Planets.
[41] J. Grant,et al. CRATER RETENTION AGES AT THE INSIGHT LANDING SITE : IMPLICATIONS FOR THE DEGRADATION HISTORY OF HOMESTEAD HOLLOW , 2019 .
[42] J. Grant,et al. SURFACE ALTERATION FROM LANDING INSIGHT ON MARS AND ITS IMPLICATIONS FOR SHALLOW REGOLITH STRUCTURE , 2019 .
[43] M. Golombek,et al. Probing the Regolith at the InSight Landing Site Using Rocky Ejecta Craters , 2019 .
[44] J. Grant,et al. CLAST SIZES AND SHAPES AT THE INSIGHT LANDING SITE , 2019 .
[45] J. Grant,et al. Rock distributions at the InSight landing site and implications from fragmentation theory , 2019 .
[46] M. Golombek,et al. The HP3 Radiometer on InSight , 2019 .
[47] M. Golombek,et al. INITIAL ASSESSMENT OF INSIGHT LANDING SITE PREDICTIONS , 2019 .
[48] M. Golombek,et al. Localization of the InSight Lander , 2019 .
[49] Huafeng Liu,et al. SEIS: Insight’s Seismic Experiment for Internal Structure of Mars , 2019, Space Science Reviews.
[50] J. Grant,et al. MODIFICATION OF HOMESTEAD HOLLOW AT THE INSIGHT LANDING SITE , 2019 .
[51] David Mimoun,et al. The atmosphere of Mars as observed by InSight , 2020, Nature Geoscience.
[52] S. Kedar,et al. The seismicity of Mars , 2020, Nature Geoscience.
[53] M. Golombek,et al. Crust stratigraphy and heterogeneities of the first kilometers at the dichotomy boundary in western Elysium Planitia and implications for InSight lander , 2020, Icarus.
[54] J. Grant,et al. ROCK SIZE-FREQUENCY DISTRIBUTIONS ON MARS , 2021 .