Geology of the InSight landing site on Mars

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Geology of the InSight landing site on Mars M. Golombek, N. Warner, J. Grant, E. Hauber, V. Ansan, C. Weitz, N. Williams, C. Charalambous, S. Wilson, A. Demott, et al.

[1]  P. Rosin The Laws Governing the Fineness of Powdered Coal , 1933 .

[2]  J. Gilvarry,et al.  Fracture of Brittle Solids. II. Distribution Function for Fragment Size in Single Fracture (Experimental) , 1961 .

[3]  R. L. Duncombe,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites , 1980 .

[4]  W. Hartmann Does crater “saturation equilibrium” occur in the solar system? , 1984 .

[5]  W. K. Brown,et al.  Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash , 1989 .

[6]  D. Turcotte Fractals and Chaos in Geology and Geophysics , 1992 .

[7]  W. K. Brown,et al.  Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions , 1995 .

[8]  E. Standish,et al.  Martian precession and rotation from Viking lander range data , 1997 .

[9]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[10]  A. McEwen,et al.  Repeated Aqueous Flooding from the Cerberus Fossae: Evidence for Very Recently Extant, Deep Groundwater on Mars , 2002 .

[11]  J F Bell,et al.  Surficial Deposits at Gusev Crater Along Spirit Rover Traverses , 2004, Science.

[12]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[13]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[14]  J. Grant,et al.  Crater gradation in Gusev crater and Meridiani Planum, Mars , 2006 .

[15]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[16]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[17]  Raymond E. Arvidson,et al.  Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .

[18]  J. Vaucher,et al.  The volcanic history of central Elysium Planitia: Implications for martian magmatism , 2009 .

[19]  M. Mellon,et al.  Geomorphic and geologic settings of the Phoenix Lander mission landing site , 2009 .

[20]  R. Anderson,et al.  Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs , 2011 .

[21]  Raymond E. Arvidson,et al.  Explosive erosion during the Phoenix landing exposes subsurface water on Mars , 2011 .

[22]  A. Huertas,et al.  Detection and Characterization of Rocks and Rock Size-Frequency Distributions at the Final Four Mars Science Laboratory Landing Sites , 2012 .

[23]  J. Wookey,et al.  Estimates of seismic activity in the Cerberus Fossae region of Mars , 2013 .

[24]  Constantinos Charalambous On the evolution of particle fragmentation with applications to planetary surfaces , 2014 .

[25]  L. Sebastien InSight coordinates determination from direct-to-Earth radio-tracking and Mars topography model , 2016 .

[26]  M. Golombek,et al.  An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site , 2017, Space Science Reviews.

[27]  J. Tromp,et al.  Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator , 2017 .

[28]  M. Golombek,et al.  Radar-Derived Properties of the InSight Landing Site in Western Elysium Planitia on Mars , 2016, Space Science Reviews.

[29]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[30]  R. Kirk,et al.  Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission , 2017 .

[31]  D. Breuer,et al.  The Heat Flow and Physical Properties Package (HP3) for the InSight Mission , 2018, Space Science Reviews.

[32]  M. Golombek,et al.  Pre-mission InSights on the Interior of Mars , 2019, Space Science Reviews.

[33]  Sami W. Asmar,et al.  The Rotation and Interior Structure Experiment on the InSight Mission to Mars , 2018, Space Science Reviews.

[34]  W. B. Banerdt,et al.  The Color Cameras on the InSight Lander , 2018, Space Science Reviews.

[35]  M. Golombek,et al.  The Origin of Sand on Mars , 2018 .

[36]  Robert G. Deen,et al.  InSight Mars Lander Robotics Instrument Deployment System , 2018, Space Science Reviews.

[37]  J. Grant,et al.  GEOMORPHOLOGY AND ORIGIN OF HOMESTEAD HOLLOW , THE LANDING LOCATION OF THE INSIGHT LANDER ON MARS , 2018 .

[38]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[39]  Roland Martin,et al.  Atmospheric Science with InSight , 2018, Space Science Reviews.

[40]  Jason R. Brown,et al.  Possible Evidence for Variation in Magnitude for Marsquakes From Fallen Boulder Populations, Grjota Valles, Mars , 2019, Journal of Geophysical Research: Planets.

[41]  J. Grant,et al.  CRATER RETENTION AGES AT THE INSIGHT LANDING SITE : IMPLICATIONS FOR THE DEGRADATION HISTORY OF HOMESTEAD HOLLOW , 2019 .

[42]  J. Grant,et al.  SURFACE ALTERATION FROM LANDING INSIGHT ON MARS AND ITS IMPLICATIONS FOR SHALLOW REGOLITH STRUCTURE , 2019 .

[43]  M. Golombek,et al.  Probing the Regolith at the InSight Landing Site Using Rocky Ejecta Craters , 2019 .

[44]  J. Grant,et al.  CLAST SIZES AND SHAPES AT THE INSIGHT LANDING SITE , 2019 .

[45]  J. Grant,et al.  Rock distributions at the InSight landing site and implications from fragmentation theory , 2019 .

[46]  M. Golombek,et al.  The HP3 Radiometer on InSight , 2019 .

[47]  M. Golombek,et al.  INITIAL ASSESSMENT OF INSIGHT LANDING SITE PREDICTIONS , 2019 .

[48]  M. Golombek,et al.  Localization of the InSight Lander , 2019 .

[49]  Huafeng Liu,et al.  SEIS: Insight’s Seismic Experiment for Internal Structure of Mars , 2019, Space Science Reviews.

[50]  J. Grant,et al.  MODIFICATION OF HOMESTEAD HOLLOW AT THE INSIGHT LANDING SITE , 2019 .

[51]  David Mimoun,et al.  The atmosphere of Mars as observed by InSight , 2020, Nature Geoscience.

[52]  S. Kedar,et al.  The seismicity of Mars , 2020, Nature Geoscience.

[53]  M. Golombek,et al.  Crust stratigraphy and heterogeneities of the first kilometers at the dichotomy boundary in western Elysium Planitia and implications for InSight lander , 2020, Icarus.

[54]  J. Grant,et al.  ROCK SIZE-FREQUENCY DISTRIBUTIONS ON MARS , 2021 .