Stem length and canal filling in uncemented custom-made total hip arthroplasty

Abstract We reviewed 60 custom-made femoral components of two different lengths : 125 mm (group A) and 100 mm (group B), in order to investigate the relationship between stem length and canal filling in uncemented custom-made total hip arthroplasty. There were no statistical differences between the two groups in age, gender, height, body weight, canal flare index, or bowing angle of the femur. Postoperatively there was no statistical difference between the two groups in the proximal canal filling, but significant difference in the distal canal filling (75.5% vs 85.8% on the anteroposterior view and 76.0% vs 82.5% in the lateral view, P<0.001). The distal canal filling inversely correlated with the ratio of the proximal portion and the distal portion of the stem curvature on the lateral view (lateral curve ratio of the stem, P=0.002). We conclude that superior filling at both the proximal and the distal levels can be obtained by using 100-mm custom made components with a small lateral curve ratio.Résumé. Pour étudier la relation existant entre la longueur de la tige et le remplissage du canal dans une arthroplastie totale de la hanche effectuée sur mesure, nous avons réexaminé 60 éléments fémoraux de deux longueurs différentes: 125 mm (groupe A) et 100 mm (groupe B). Que ce soit l’áge, le genre, la hauteur, le poids du corps, l’indice d’érasement du canal ou l’angle de courbure du fémur, il n’existait pas de différences statistiques entre les deux groupes. Alors qu’il n’y avait pas de différences statistiques post-opératoires entre les deux groupes dans le remplissage du canal proximal, il y avait par contre une différence significative dans le remplissage du canal distal (75.5% par rapport á 85.8% sur une vue antéropostérieure et 76.0% par rapport á 82.5% sur une vue latérale, P<0.001). Le remplissage du canal distal se rattachait inversement avec le rapport de la portion proximale et de la portion distale de la courbure de la tige sur la vue latérale (rapport de la courbure latérale, P=0.002). On en conclut que le remplissage supérieur aux niveaux proximaux et distaux peut étre obtenu en utilisant des éléments sur mesure de 100 mm avec un faible rapport de la courbure latérale.

[1]  L. Dorr,et al.  Failure mechanisms of anatomic porous replacement I cementless total hip replacement. , 1997, Clinical orthopaedics and related research.

[2]  R L Wixson,et al.  The rationale, design characteristics, and preliminary results of a primary custom total hip prosthesis. , 1989, Clinical orthopaedics and related research.

[3]  J. Bono,et al.  Custom and modular components in primary total hip replacement. , 1997, Clinical orthopaedics and related research.

[4]  Robert N. Hensinger,et al.  Annual Meeting of the American Academy of Orthopaedic Surgeons , 1995 .

[5]  H Weinans,et al.  Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty. , 1989, Orthopedics.

[6]  Engh Ca,et al.  The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. , 1988 .

[7]  R. Jinnah,et al.  Computerized templating in uncemented total hip arthroplasty to assess component fit and fill. , 1992, The Journal of arthroplasty.

[8]  J M Bert,et al.  Custom total hip arthroplasty. , 1996, The Journal of arthroplasty.

[9]  C. Engh,et al.  The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. , 1988, Clinical orthopaedics and related research.

[10]  M Mulier,et al.  A new system to produce intraoperatively custom femoral prosthesis from measurements taken during the surgical procedure. , 1989, Clinical orthopaedics and related research.

[11]  R. Bourne,et al.  Ingrowth surfaces. Plasma spray coating to titanium alloy hip replacements. , 1994, Clinical orthopaedics and related research.

[12]  C. Engh,et al.  The case for porous-coated hip implants. The femoral side. , 1990, Clinical orthopaedics and related research.

[13]  A. Lombardi,et al.  Failure of intraoperatively customized non-porous femoral components inserted without cement in total hip arthroplasty. , 1995, The Journal of bone and joint surgery. American volume.

[14]  H. Amstutz,et al.  The anthropometric total hip femoral prosthesis. Preliminary clinical and roentgenographic findings of exact-fit cementless application. , 1989, Clinical orthopaedics and related research.

[15]  H. Tullos,et al.  The anatomic basis of femoral component design. , 1988, Clinical orthopaedics and related research.

[16]  W. Bargar,et al.  Shape the implant to the patient. A rationale for the use of custom-fit cementless total hip implants. , 1989, Clinical orthopaedics and related research.

[17]  T A Xenakis,et al.  Neglected congenital dislocation of the hip. Role of computed tomography and computer-aided design for total hip arthroplasty. , 1996, The Journal of arthroplasty.

[18]  D. Davy,et al.  The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. , 1995, The Journal of bone and joint surgery. American volume.

[19]  J. Gorski Modular noncemented total hip arthroplasty for congenital dislocation of the hip. Case report and design rationale. , 1988, Clinical orthopaedics and related research.

[20]  R. Geesink,et al.  Six-year results of hydroxyapatite-coated total hip replacement. , 1995, The Journal of bone and joint surgery. British volume.

[21]  C. Engh,et al.  Torsional fixation of the femoral component in total hip arthroplasty. The effect of surgical press-fit technique. , 1992, Clinical orthopaedics and related research.