Dendrimers with Porphyrin Cores: Synthetic Models for Globular Heme Proteins
暂无分享,去创建一个
[1] Christopher L. Brown,et al. A CONVERGENT SYNTHESIS OF A CARBOHYDRATE-CONTAINING DENDRIMER , 1997 .
[2] J. F. Stoddart,et al. Konvergente Synthese von Dendrimeren mit Kohlenhydrat‐Einheiten , 1997 .
[3] A. Hirsch,et al. The C60 Core: A Versatile Tecton for Dendrimer Chemistry , 1997 .
[4] D. Astruc,et al. The Dendritic Effect in Molecular Recognition: Ferrocene Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions , 1997 .
[5] R. Roy,et al. Synthesis of New α-Thiosialodendrimers and Their Binding Properties to the Sialic Acid Specific Lectin from Limax flavus , 1997 .
[6] H. Wagenknecht,et al. New Active‐Site Analogues of Chloraperoxidase—Syntheses and Catalytic Reactions , 1997 .
[7] I. Cuadrado,et al. Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors , 1997 .
[8] H. Wagenknecht,et al. Neue Enzymmodelle für die Chlorperoxidase — Synthesen und katalytische Reaktionen , 1997 .
[9] J. Rebek,et al. Acceleration of a Diels–Alder reaction by a self-assembled molecular capsule , 1997, Nature.
[10] C. Shu,et al. Organometallic ferrocenyl dendrimers: Synthesis, characterization and redox properties , 1997 .
[11] Jeffrey S. Moore. Molecular architecture and supramolecular chemistry , 1996 .
[12] M. Göbel,et al. Bis(guanidinium) Alcohols as Models of Staphylococcal Nuclease: Substrate Binding through Ion Pair Complexes and Fast Phosphoryl Transfer Reactions , 1996 .
[13] M. Göbel,et al. Bis(guanidinium)‐Alkohole als Modelle der Staphylokokken‐Nuclease: Substratbindung über Ionenpaarkomplexe und schnelle Phosphoryl‐Übertragungsreaktionen , 1996 .
[14] H. Chow,et al. Dendritic Models of Redox Proteins: X‐ray Photoelectron Spectroscopy and Cyclic Voltammetry Studies of Dendritic bis(Terpyridine) iron(II) Complexes , 1996 .
[15] J. V. Hest,et al. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles , 1996 .
[16] T. Aida,et al. Aryl Ether Dendrimers with an Interior Metalloporphyrin Functionality as a Spectroscopic Probe: Interpenetrating Interaction with Dendritic Imidazoles , 1996 .
[17] F. Diederich,et al. A Flavo‐Thiazolio‐Cyclophane as a Functional Model for Pyruvate Oxidase , 1996 .
[18] François Diederich,et al. Ein Flavo‐Thiazolio‐Cyclophan als funktionsfähiges Modell für die Pyruvat‐Oxidase , 1996 .
[19] K. Suslick,et al. Dendrimer-metalloporphyrins: Synthesis and catalysis , 1996 .
[20] D. Reinhoudt,et al. Controlled assembly of nanosized metallodendrimers , 1996 .
[21] D. Reinhoudt,et al. Kontrollierter Aufbau nanometergroßer, metallorganischer Dendrimere , 1996 .
[22] F. Diederich,et al. Dendrophanes: Novel Steroid‐Recognizing Dendritic Receptors. Preliminary Communication , 1996 .
[23] T. Aida,et al. Photoinduced electron transfer reactions through dendrimer architecture , 1996 .
[24] A. Kirby. Enzyme — Mechanismen, Modellreaktionen und Mimetica , 1996 .
[25] H. Whitlock,et al. HOST-CATALYZED ISOXAZOLE RING OPENING : A RATIONALLY DESIGNED ARTIFICIAL ENZYME , 1996 .
[26] J. Ulstrup,et al. pH and ionic strength effects on electron transfer rate constants and reduction potentials of the bacterial di-heme protein Pseudomonas stutzeri cytochrome c4. , 1996, Acta chemica Scandinavica.
[27] David E Reichert,et al. Self-Assembling Dendrimers , 1996, Science.
[28] F. Diederich,et al. Water‐Soluble Dendritic Iron Porphyrins: Synthetic Models of Globular Heme Proteins , 1996 .
[29] W. Devonport,et al. Redox-active dendrimers, related building blocks, and oligomers , 1996 .
[30] Peter J. Dandliker,et al. Wasserlösliche dendritische Eisenporphyrine: synthetische Modelle für globuläre Häm‐Proteine , 1995 .
[31] F. Diederich,et al. Dendrophanes: Water‐Soluble Dendritic Receptors. Preliminary communication , 1995 .
[32] W. DeGrado,et al. Protein Design: A Hierarchic Approach , 1995, Science.
[33] V. Balzani,et al. Protected building blocks for lurrrinescent and redox-active dendritic metal complexes. Excited state properties and electrochemical behavior , 1995 .
[34] L. Echegoyen,et al. Routes to Dendritic Networks: Bis‐Dendrimers by Coupling of Cascade Macromolecules through Metal Centers , 1995 .
[35] R. Lerner,et al. From molecular diversity to catalysis: lessons from the immune system. , 1995, Science.
[36] H. Brunner. Dendrizymes: Expanded ligands for enantioselective catalysis , 1995 .
[37] Charles N. Moorefield,et al. Wege zu dendritischen Netzwerken: Bis-Dendrimere durch Verknüpfung von Kaskadenmolekülen über Metallzentren† , 1995 .
[38] M. Casanove,et al. DENDRIMER SURFACE CHEMISTRY. FACILE ROUTE TO POLYPHOSPHINES AND THEIR GOLD COMPLEXES , 1995 .
[39] D. Reinhoudt,et al. Large self-assembled organopalladium spheres , 1995 .
[40] I. Cuadrado,et al. Electrodes modified with electroactive films of organometallic dendrimers , 1995 .
[41] V. Balzani,et al. Dendrimers of Nanometer Size Based on Metal Complexes: Luminescent and Redox‐Active Polynuclear Metal Complexes Containing up to Twenty‐Two Metal Centers , 1995 .
[42] J. R. Moss,et al. SYNTHESIS OF VERY LARGE ORGANORUTHENIUM DENDRIMERS , 1995 .
[43] Ronald Breslow,et al. Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design , 1995 .
[44] M. Brunori,et al. Structure and function of a molecular machine: cytochrome c oxidase. , 1995, Biophysical chemistry.
[45] F. Vögtle,et al. Dendrimers: From Generations and Functional Groups to Functions , 1995 .
[46] Fritz Vögtle,et al. Dendrimere: von Generationen zu Funktionalitäten und Funktionen , 1994 .
[47] D. M. Grove,et al. Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes , 1994, Nature.
[48] E. Meijer,et al. Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.
[49] D. Seebach,et al. Synthesis of Chiral Starburst Dendrimers from PHB-Derived Triols as Central Cores , 1994 .
[50] A. Bond. Chemical and electrochemical approaches to the investigation of redox reactions of simple electron transfer metalloproteins , 1994 .
[51] Huan‐Xiang Zhou. Effects of Mutations and Complex Formation on the Reduction Potentials of Cytochrome c and Cytochrome c Peroxidase , 1994 .
[52] A. Moore,et al. Dendritic Macromolecules Incorporating Tetrathiafulvalene Units , 1994 .
[53] F. Diederich,et al. Dendritic Porphyrins: Modulating Redox Potentials of Electroactive Chromophores with Pendant Multifunctionality , 1994 .
[54] François Diederich,et al. Dendritische Porphyrine: Modulation des Redoxpotentials elektroaktiver Chromophore durch periphere Multifunktionalität , 1994 .
[55] Martina Bryce,et al. Dendritische Makromoleküle mit Tetrathiafulvalen‐Einheiten , 1994 .
[56] P. Singh,et al. Starburst dendrimers: enhanced performance and flexibility for immunoassays. , 1994, Clinical chemistry.
[57] Richard J. Puddephatt,et al. Organoplatinum dendrimers formed by oxidative addition , 1994 .
[58] V. Balzani,et al. Bottom-up strategy to obtain luminescent and redox-active metal complexes of nanometric dimensions , 1994 .
[59] R. J. Puddephatt,et al. Bildung von Organoplatin‐Dendrimeren durch oxidative Addition , 1994 .
[60] Jeffrey S. Moore,et al. Design and synthesis of a convergent and directional molecular antenna , 1994 .
[61] George R. Newkome,et al. Chemistry within a Unimolecular Micelle Precursor: Boron Superclusters by Site‐ and Depth‐Specific Transformations of Dendrimers , 1994 .
[62] George R. Newkome,et al. Chemische Umsetzungen im Inneren einer Vorstufe von unimolekularen Micellen: Bor‐Supercluster durch ortsspezifische Addition von B10H14 an Kaskadenmoleküle , 1994 .
[63] D. Seebach,et al. Chiral Dendrimers from Tris(hydroxymethyl)methane Derivatives , 1994 .
[64] D. Seebach,et al. Chirale Tris(hydroxymethyl)methan‐Derivate als Synthesebausteine für chirale Dendrimere , 1994 .
[65] I. Wilson,et al. Routes to catalysis: structure of a catalytic antibody and comparison with its natural counterpart. , 1994, Science.
[66] R. Wagner,et al. Synthesis of porphyrins tailored with eight facially-encumbering groups. An approach to solid-state light-harvesting complexes , 1994 .
[67] T. Yagi. [8]Monoheme cytochromes , 1994 .
[68] Harry B. Gray,et al. Structurally engineered cytochromes with novel ligand-binding sites: oxy and carbon monoxy derivatives of semisynthetic horse heart Ala80 cytochrome c , 1993 .
[69] C. Hawker,et al. Fullerene-bound dendrimers. Soluble, isolated carbon clusters , 1993 .
[70] F. Diederich,et al. Catalytic Cyclophanes. Part VIII. Cytochrome P‐450 activity of a porphyrin‐bridged cyclophane , 1993 .
[71] W. Thiel,et al. Metallorganische molekulare Bäume als Mehrelektronen‐ und Mehrprotonenspeicher: CpFe+‐induzierte Nonaallylierung von Mesitylen und phasentransferkatalysierte Synthese eines redoxaktiven Nonaeisenkomplexes , 1993 .
[72] M. Delville,et al. Organometallic Molecular Trees as Multielectron and Multiproton Reservoirs: CpFe+‐Induced Nonaallylation of Mesitylene and Phase‐Transfer Catalyzed Synthesis of a Redox‐Active Nonairon Complex , 1993 .
[73] C. Hawker,et al. Solvatochromism as a Probe of the Microenvironment in Dendritic Polyethers: Transition from an Extended to a Globular Structure , 1993 .
[74] T. Akaike,et al. Electrochemistry of cytochrome c: influence of coulombic attraction with indium tin oxide electrode , 1993 .
[75] V. Balzani,et al. Arborols Based on Luminescent and Redox‐Active Transition Metal Complexes , 1992 .
[76] Sebastian Campagna,et al. Arborole aus vielen lumineszierenden und redox‐aktiven Übergangsmetallkomplexfragmenten , 1992 .
[77] Maria T. Cruañes,et al. Protein electrochemistry at high pressure , 1992 .
[78] F. Sherman,et al. Tuning the redox potential of cytochrome c through synergistic site replacements , 1992 .
[79] S. Sligar,et al. Surface electrostatics, reduction potentials, and the internal dielectric constant of proteins , 1991 .
[80] Xiaofeng Lin,et al. SYMMETRICAL FOUR-DIRECTIONAL, POLY(ETHER-AMIDE) CASCADE POLYMERS , 1991 .
[81] Xiaofeng Lin,et al. Polytryptophane terminated dendritic macromolecules , 1991 .
[82] H. Gray,et al. Semisynthesis of axial-ligand (position 80) mutants of cytochrome c , 1991 .
[83] William A. Goddard,et al. Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .
[84] D. A. Tomalia,et al. Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .
[85] D. Lawrence,et al. High yield synthesis of 5,15-diarylporphyrins , 1989 .
[86] H B Gray,et al. Axial ligand replacement in horse heart cytochrome c by semisynthesis , 1989, Proteins.
[87] J. Savéant,et al. Supramolecular Effects in the Redox and Coordination Chemistry of Superstructured Iron Porphyrins , 1988 .
[88] G. Dryhurst,et al. Redox Chemistry and Interfacial Behavior of Biological Molecules , 1988, Springer US.
[89] F. Xu,et al. Molecular environment effects in redox and coordination chemistry. Protection against solvation, local solvation, and steric hindrance to ligation in the electrochemistry of basket-handle iron porphyrins , 1986 .
[90] F. M. Hawkridge,et al. Temperature and electrolyte effects on the electron-transfer reactions of cytochrome c , 1985 .
[91] Irwin A. Rose,et al. Enzyme structure and mechanism (2nd edn): by Alan Fersht, W. H. Freeman & Co., 1985. £14.95 pbk, £28.95 hbk (xxi + 475 pages) ISBN 0 7167 1615 1 , 1985 .
[92] F. Xu,et al. Molecular environment effects in redox chemistry: electrochemistry of ether-linked basket-handle and amide-linked basket-handle and picket-fence iron porphyrins , 1984 .
[93] J. Valentine,et al. INFLUENCE OF HYDROGEN BONDING ON THE PROPERTIES OF IRON PORPHYRIN IMIDAZOLE COMPLEXES. AN INTERNALLY HYDROGEN BONDED IMIDAZOLE LIGAND , 1984 .
[94] H. Gray,et al. Spectroelectrochemical Determination of the Temperature Dependence of Reduction Potentials: Tris(1,10-phenanthroline) Complexes of Iron and Cobalt with c-Type Cytochromes , 1982 .
[95] T. Klose,et al. Syntheses and oxygenation of iron(II) “strapped” porphyrin complexes , 1982 .
[96] C. Reed,et al. How Does Nature Control Cytochrome Redox Potentials , 1982 .
[97] A. Hillman,et al. Mechanism of the reduction and oxidation reaction of cytochrome c at a modified gold electrode , 1981 .
[98] K. Kadish,et al. Counterion and solvent effects on the electrode reactions of manganese porphyrins , 1981 .
[99] J. North,et al. A water soluble “picket fence” porphyrin and its isomers , 1981 .
[100] K. Kadish,et al. Influence of substituted pyridines on the redox reactions of iron porphyrins , 1980 .
[101] Mario Joseph Nappa,et al. The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc , 1978 .
[102] D. G. Davis,et al. A study of solvent and substituent effects on the redox potentials and electron-transfer rate constants of substituted iron meso-tetraphenylporphyrins. , 1976, Journal of the American Chemical Society.
[103] R. Dickerson,et al. The structure of ferrocytochrome c at 2.45 A resolution. , 1973, The Journal of biological chemistry.
[104] D. G. Davis,et al. The redox behavior of metallo octaethylporphyrins. , 1973, Journal of the American Chemical Society.
[105] R. Kassner,et al. A theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. , 1973, Journal of the American Chemical Society.
[106] T. Flatmark,et al. Comparative study of physicochemical properties of two c-type cytochromes of Rhodospirillum molischianum. , 1970, Biochemistry.
[107] P. K. Warme,et al. Heme sulfuric anhydrides. II. Properties of heme models prepared from mesoheme sulfuric anhydrides. , 1970, Biochemistry.
[108] R. Chong,et al. The chemistry of pyrrolic compounds. VII. Synthesis of 5,5'-diformyldipyrryl-methanes , 1969 .
[109] H P Schwan,et al. Dielectric dispersion of crystalline powders of amino acids, peptides, and proteins. , 1965, The Journal of physical chemistry.
[110] S. Vinogradov,et al. Complex formation between methionine and a heme peptide from cytochrome c. , 1965, Proceedings of the National Academy of Sciences of the United States of America.
[111] D. Rosen. Dielectric properties of protein powders with adsorbed water , 1963 .
[112] P. Loach,et al. Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. , 1960, The Journal of biological chemistry.
[113] R. Adams,et al. A New Synthesis of Atranol (2,6-Dihydroxy-4-methylbenzaldehyde) and the Corresponding Cinnamic Acid , 1948 .
[114] W. Clark,et al. METALLOPORPHYRINS VI. CYCLES OF CHANGES IN SYSTEMS CONTAINING HEME , 1947 .