Dendrimers with Porphyrin Cores: Synthetic Models for Globular Heme Proteins

Dendritic iron porphyrins were synthesized as functional mimics of globular electron-transfer heme proteins. The cascade molecules 1 · Zn−3 Zn of first to third generation were obtained starting from the (meso-diarylporphyrin) zinc 6 · Zn which contains four carboxylate arms for attachment of the poly(ether-amide) dendritic branches by peptide-coupling methodology (Scheme 1). Generation 3 compound 3 · Zn with 108 methyl-carboxylate end groups has a molecular weight of 19054. D, and computer modeling suggests that its structure is globular and densely-packed, measuring ca. 4 nm in diameter and, therefore, similar in dimensions to the electron-transfer protein cytochrome-c. Starting from the generation 1 poly(carboxylic acid) 11 · Zn and the generation 2 analog 12 · Zn the dendritic ZnII porphyrins 4 · Zn and 5 · Zn, respectively, were obtained by esterification with triethyleneglycol monomethyl ether (Schemes 3 and 4). Demetallation followed by insertion of FeII and in situ oxidation afforded the water-soluble dendritic iron porphyrins 4 FeCl and 5 FeCl. The electrochemical behavior of esters 1 · Zn−3 · Zn in organic solvents changed smoothly with increasing dendritic generation (Table 1). Progressing from 1 · Zn to 3 · Zn in THF, the first porphyrin-centered oxidation and reduction potentials become more negative by 320 and 210mV, respectively. These changes were attributed to strong microenvironmental effects imposed on the electroactive core by the densely packed dendritic surroundings. The electrochemical properties of 4 · FeCl and 5 · FeCl were investigated by cyclic voltammetry in both CH2Cl2 and H2O (Tables 2 and 3). Progressing from 4 · FeCl to 5 · FeCl in CH2Cl2, the redox potential of the biologically relevant FeIII/FeII couple remained virtually unchanged, whereas in aqueous solution, 5 FeCl exhibited a potential 420 mV more positive than did 4 FeCl. The large difference between these potentials in H2O was attributed to differences in solvation of the core electrophore. Whereas the relatively open dendritic branches in 4 · Fecl do not impede access of bulk solvent to the central core, the densely packed dendritic superstructure of 5 · FeCl significantly reduces contact between the heme and external solvent. As a result, the more charged FeIII state is destabilized relative to FeII, and the redox potential is strongly shifted to a more positive value.

[1]  Christopher L. Brown,et al.  A CONVERGENT SYNTHESIS OF A CARBOHYDRATE-CONTAINING DENDRIMER , 1997 .

[2]  J. F. Stoddart,et al.  Konvergente Synthese von Dendrimeren mit Kohlenhydrat‐Einheiten , 1997 .

[3]  A. Hirsch,et al.  The C60 Core: A Versatile Tecton for Dendrimer Chemistry , 1997 .

[4]  D. Astruc,et al.  The Dendritic Effect in Molecular Recognition: Ferrocene Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions , 1997 .

[5]  R. Roy,et al.  Synthesis of New α-Thiosialodendrimers and Their Binding Properties to the Sialic Acid Specific Lectin from Limax flavus , 1997 .

[6]  H. Wagenknecht,et al.  New Active‐Site Analogues of Chloraperoxidase—Syntheses and Catalytic Reactions , 1997 .

[7]  I. Cuadrado,et al.  Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors , 1997 .

[8]  H. Wagenknecht,et al.  Neue Enzymmodelle für die Chlorperoxidase — Synthesen und katalytische Reaktionen , 1997 .

[9]  J. Rebek,et al.  Acceleration of a Diels–Alder reaction by a self-assembled molecular capsule , 1997, Nature.

[10]  C. Shu,et al.  Organometallic ferrocenyl dendrimers: Synthesis, characterization and redox properties , 1997 .

[11]  Jeffrey S. Moore Molecular architecture and supramolecular chemistry , 1996 .

[12]  M. Göbel,et al.  Bis(guanidinium) Alcohols as Models of Staphylococcal Nuclease: Substrate Binding through Ion Pair Complexes and Fast Phosphoryl Transfer Reactions , 1996 .

[13]  M. Göbel,et al.  Bis(guanidinium)‐Alkohole als Modelle der Staphylokokken‐Nuclease: Substratbindung über Ionenpaarkomplexe und schnelle Phosphoryl‐Übertragungsreaktionen , 1996 .

[14]  H. Chow,et al.  Dendritic Models of Redox Proteins: X‐ray Photoelectron Spectroscopy and Cyclic Voltammetry Studies of Dendritic bis(Terpyridine) iron(II) Complexes , 1996 .

[15]  J. V. Hest,et al.  Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles , 1996 .

[16]  T. Aida,et al.  Aryl Ether Dendrimers with an Interior Metalloporphyrin Functionality as a Spectroscopic Probe: Interpenetrating Interaction with Dendritic Imidazoles , 1996 .

[17]  F. Diederich,et al.  A Flavo‐Thiazolio‐Cyclophane as a Functional Model for Pyruvate Oxidase , 1996 .

[18]  François Diederich,et al.  Ein Flavo‐Thiazolio‐Cyclophan als funktionsfähiges Modell für die Pyruvat‐Oxidase , 1996 .

[19]  K. Suslick,et al.  Dendrimer-metalloporphyrins: Synthesis and catalysis , 1996 .

[20]  D. Reinhoudt,et al.  Controlled assembly of nanosized metallodendrimers , 1996 .

[21]  D. Reinhoudt,et al.  Kontrollierter Aufbau nanometergroßer, metallorganischer Dendrimere , 1996 .

[22]  F. Diederich,et al.  Dendrophanes: Novel Steroid‐Recognizing Dendritic Receptors. Preliminary Communication , 1996 .

[23]  T. Aida,et al.  Photoinduced electron transfer reactions through dendrimer architecture , 1996 .

[24]  A. Kirby Enzyme — Mechanismen, Modellreaktionen und Mimetica , 1996 .

[25]  H. Whitlock,et al.  HOST-CATALYZED ISOXAZOLE RING OPENING : A RATIONALLY DESIGNED ARTIFICIAL ENZYME , 1996 .

[26]  J. Ulstrup,et al.  pH and ionic strength effects on electron transfer rate constants and reduction potentials of the bacterial di-heme protein Pseudomonas stutzeri cytochrome c4. , 1996, Acta chemica Scandinavica.

[27]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[28]  F. Diederich,et al.  Water‐Soluble Dendritic Iron Porphyrins: Synthetic Models of Globular Heme Proteins , 1996 .

[29]  W. Devonport,et al.  Redox-active dendrimers, related building blocks, and oligomers , 1996 .

[30]  Peter J. Dandliker,et al.  Wasserlösliche dendritische Eisenporphyrine: synthetische Modelle für globuläre Häm‐Proteine , 1995 .

[31]  F. Diederich,et al.  Dendrophanes: Water‐Soluble Dendritic Receptors. Preliminary communication , 1995 .

[32]  W. DeGrado,et al.  Protein Design: A Hierarchic Approach , 1995, Science.

[33]  V. Balzani,et al.  Protected building blocks for lurrrinescent and redox-active dendritic metal complexes. Excited state properties and electrochemical behavior , 1995 .

[34]  L. Echegoyen,et al.  Routes to Dendritic Networks: Bis‐Dendrimers by Coupling of Cascade Macromolecules through Metal Centers , 1995 .

[35]  R. Lerner,et al.  From molecular diversity to catalysis: lessons from the immune system. , 1995, Science.

[36]  H. Brunner Dendrizymes: Expanded ligands for enantioselective catalysis , 1995 .

[37]  Charles N. Moorefield,et al.  Wege zu dendritischen Netzwerken: Bis-Dendrimere durch Verknüpfung von Kaskadenmolekülen über Metallzentren† , 1995 .

[38]  M. Casanove,et al.  DENDRIMER SURFACE CHEMISTRY. FACILE ROUTE TO POLYPHOSPHINES AND THEIR GOLD COMPLEXES , 1995 .

[39]  D. Reinhoudt,et al.  Large self-assembled organopalladium spheres , 1995 .

[40]  I. Cuadrado,et al.  Electrodes modified with electroactive films of organometallic dendrimers , 1995 .

[41]  V. Balzani,et al.  Dendrimers of Nanometer Size Based on Metal Complexes: Luminescent and Redox‐Active Polynuclear Metal Complexes Containing up to Twenty‐Two Metal Centers , 1995 .

[42]  J. R. Moss,et al.  SYNTHESIS OF VERY LARGE ORGANORUTHENIUM DENDRIMERS , 1995 .

[43]  Ronald Breslow,et al.  Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design , 1995 .

[44]  M. Brunori,et al.  Structure and function of a molecular machine: cytochrome c oxidase. , 1995, Biophysical chemistry.

[45]  F. Vögtle,et al.  Dendrimers: From Generations and Functional Groups to Functions , 1995 .

[46]  Fritz Vögtle,et al.  Dendrimere: von Generationen zu Funktionalitäten und Funktionen , 1994 .

[47]  D. M. Grove,et al.  Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes , 1994, Nature.

[48]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[49]  D. Seebach,et al.  Synthesis of Chiral Starburst Dendrimers from PHB-Derived Triols as Central Cores , 1994 .

[50]  A. Bond Chemical and electrochemical approaches to the investigation of redox reactions of simple electron transfer metalloproteins , 1994 .

[51]  Huan‐Xiang Zhou Effects of Mutations and Complex Formation on the Reduction Potentials of Cytochrome c and Cytochrome c Peroxidase , 1994 .

[52]  A. Moore,et al.  Dendritic Macromolecules Incorporating Tetrathiafulvalene Units , 1994 .

[53]  F. Diederich,et al.  Dendritic Porphyrins: Modulating Redox Potentials of Electroactive Chromophores with Pendant Multifunctionality , 1994 .

[54]  François Diederich,et al.  Dendritische Porphyrine: Modulation des Redoxpotentials elektroaktiver Chromophore durch periphere Multifunktionalität , 1994 .

[55]  Martina Bryce,et al.  Dendritische Makromoleküle mit Tetrathiafulvalen‐Einheiten , 1994 .

[56]  P. Singh,et al.  Starburst dendrimers: enhanced performance and flexibility for immunoassays. , 1994, Clinical chemistry.

[57]  Richard J. Puddephatt,et al.  Organoplatinum dendrimers formed by oxidative addition , 1994 .

[58]  V. Balzani,et al.  Bottom-up strategy to obtain luminescent and redox-active metal complexes of nanometric dimensions , 1994 .

[59]  R. J. Puddephatt,et al.  Bildung von Organoplatin‐Dendrimeren durch oxidative Addition , 1994 .

[60]  Jeffrey S. Moore,et al.  Design and synthesis of a convergent and directional molecular antenna , 1994 .

[61]  George R. Newkome,et al.  Chemistry within a Unimolecular Micelle Precursor: Boron Superclusters by Site‐ and Depth‐Specific Transformations of Dendrimers , 1994 .

[62]  George R. Newkome,et al.  Chemische Umsetzungen im Inneren einer Vorstufe von unimolekularen Micellen: Bor‐Supercluster durch ortsspezifische Addition von B10H14 an Kaskadenmoleküle , 1994 .

[63]  D. Seebach,et al.  Chiral Dendrimers from Tris(hydroxymethyl)methane Derivatives , 1994 .

[64]  D. Seebach,et al.  Chirale Tris(hydroxymethyl)methan‐Derivate als Synthesebausteine für chirale Dendrimere , 1994 .

[65]  I. Wilson,et al.  Routes to catalysis: structure of a catalytic antibody and comparison with its natural counterpart. , 1994, Science.

[66]  R. Wagner,et al.  Synthesis of porphyrins tailored with eight facially-encumbering groups. An approach to solid-state light-harvesting complexes , 1994 .

[67]  T. Yagi [8]Monoheme cytochromes , 1994 .

[68]  Harry B. Gray,et al.  Structurally engineered cytochromes with novel ligand-binding sites: oxy and carbon monoxy derivatives of semisynthetic horse heart Ala80 cytochrome c , 1993 .

[69]  C. Hawker,et al.  Fullerene-bound dendrimers. Soluble, isolated carbon clusters , 1993 .

[70]  F. Diederich,et al.  Catalytic Cyclophanes. Part VIII. Cytochrome P‐450 activity of a porphyrin‐bridged cyclophane , 1993 .

[71]  W. Thiel,et al.  Metallorganische molekulare Bäume als Mehrelektronen‐ und Mehrprotonenspeicher: CpFe+‐induzierte Nonaallylierung von Mesitylen und phasentransferkatalysierte Synthese eines redoxaktiven Nonaeisenkomplexes , 1993 .

[72]  M. Delville,et al.  Organometallic Molecular Trees as Multielectron and Multiproton Reservoirs: CpFe+‐Induced Nonaallylation of Mesitylene and Phase‐Transfer Catalyzed Synthesis of a Redox‐Active Nonairon Complex , 1993 .

[73]  C. Hawker,et al.  Solvatochromism as a Probe of the Microenvironment in Dendritic Polyethers: Transition from an Extended to a Globular Structure , 1993 .

[74]  T. Akaike,et al.  Electrochemistry of cytochrome c: influence of coulombic attraction with indium tin oxide electrode , 1993 .

[75]  V. Balzani,et al.  Arborols Based on Luminescent and Redox‐Active Transition Metal Complexes , 1992 .

[76]  Sebastian Campagna,et al.  Arborole aus vielen lumineszierenden und redox‐aktiven Übergangsmetallkomplexfragmenten , 1992 .

[77]  Maria T. Cruañes,et al.  Protein electrochemistry at high pressure , 1992 .

[78]  F. Sherman,et al.  Tuning the redox potential of cytochrome c through synergistic site replacements , 1992 .

[79]  S. Sligar,et al.  Surface electrostatics, reduction potentials, and the internal dielectric constant of proteins , 1991 .

[80]  Xiaofeng Lin,et al.  SYMMETRICAL FOUR-DIRECTIONAL, POLY(ETHER-AMIDE) CASCADE POLYMERS , 1991 .

[81]  Xiaofeng Lin,et al.  Polytryptophane terminated dendritic macromolecules , 1991 .

[82]  H. Gray,et al.  Semisynthesis of axial-ligand (position 80) mutants of cytochrome c , 1991 .

[83]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[84]  D. A. Tomalia,et al.  Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .

[85]  D. Lawrence,et al.  High yield synthesis of 5,15-diarylporphyrins , 1989 .

[86]  H B Gray,et al.  Axial ligand replacement in horse heart cytochrome c by semisynthesis , 1989, Proteins.

[87]  J. Savéant,et al.  Supramolecular Effects in the Redox and Coordination Chemistry of Superstructured Iron Porphyrins , 1988 .

[88]  G. Dryhurst,et al.  Redox Chemistry and Interfacial Behavior of Biological Molecules , 1988, Springer US.

[89]  F. Xu,et al.  Molecular environment effects in redox and coordination chemistry. Protection against solvation, local solvation, and steric hindrance to ligation in the electrochemistry of basket-handle iron porphyrins , 1986 .

[90]  F. M. Hawkridge,et al.  Temperature and electrolyte effects on the electron-transfer reactions of cytochrome c , 1985 .

[91]  Irwin A. Rose,et al.  Enzyme structure and mechanism (2nd edn): by Alan Fersht, W. H. Freeman & Co., 1985. £14.95 pbk, £28.95 hbk (xxi + 475 pages) ISBN 0 7167 1615 1 , 1985 .

[92]  F. Xu,et al.  Molecular environment effects in redox chemistry: electrochemistry of ether-linked basket-handle and amide-linked basket-handle and picket-fence iron porphyrins , 1984 .

[93]  J. Valentine,et al.  INFLUENCE OF HYDROGEN BONDING ON THE PROPERTIES OF IRON PORPHYRIN IMIDAZOLE COMPLEXES. AN INTERNALLY HYDROGEN BONDED IMIDAZOLE LIGAND , 1984 .

[94]  H. Gray,et al.  Spectroelectrochemical Determination of the Temperature Dependence of Reduction Potentials: Tris(1,10-phenanthroline) Complexes of Iron and Cobalt with c-Type Cytochromes , 1982 .

[95]  T. Klose,et al.  Syntheses and oxygenation of iron(II) “strapped” porphyrin complexes , 1982 .

[96]  C. Reed,et al.  How Does Nature Control Cytochrome Redox Potentials , 1982 .

[97]  A. Hillman,et al.  Mechanism of the reduction and oxidation reaction of cytochrome c at a modified gold electrode , 1981 .

[98]  K. Kadish,et al.  Counterion and solvent effects on the electrode reactions of manganese porphyrins , 1981 .

[99]  J. North,et al.  A water soluble “picket fence” porphyrin and its isomers , 1981 .

[100]  K. Kadish,et al.  Influence of substituted pyridines on the redox reactions of iron porphyrins , 1980 .

[101]  Mario Joseph Nappa,et al.  The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc , 1978 .

[102]  D. G. Davis,et al.  A study of solvent and substituent effects on the redox potentials and electron-transfer rate constants of substituted iron meso-tetraphenylporphyrins. , 1976, Journal of the American Chemical Society.

[103]  R. Dickerson,et al.  The structure of ferrocytochrome c at 2.45 A resolution. , 1973, The Journal of biological chemistry.

[104]  D. G. Davis,et al.  The redox behavior of metallo octaethylporphyrins. , 1973, Journal of the American Chemical Society.

[105]  R. Kassner,et al.  A theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. , 1973, Journal of the American Chemical Society.

[106]  T. Flatmark,et al.  Comparative study of physicochemical properties of two c-type cytochromes of Rhodospirillum molischianum. , 1970, Biochemistry.

[107]  P. K. Warme,et al.  Heme sulfuric anhydrides. II. Properties of heme models prepared from mesoheme sulfuric anhydrides. , 1970, Biochemistry.

[108]  R. Chong,et al.  The chemistry of pyrrolic compounds. VII. Synthesis of 5,5'-diformyldipyrryl-methanes , 1969 .

[109]  H P Schwan,et al.  Dielectric dispersion of crystalline powders of amino acids, peptides, and proteins. , 1965, The Journal of physical chemistry.

[110]  S. Vinogradov,et al.  Complex formation between methionine and a heme peptide from cytochrome c. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[111]  D. Rosen Dielectric properties of protein powders with adsorbed water , 1963 .

[112]  P. Loach,et al.  Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. , 1960, The Journal of biological chemistry.

[113]  R. Adams,et al.  A New Synthesis of Atranol (2,6-Dihydroxy-4-methylbenzaldehyde) and the Corresponding Cinnamic Acid , 1948 .

[114]  W. Clark,et al.  METALLOPORPHYRINS VI. CYCLES OF CHANGES IN SYSTEMS CONTAINING HEME , 1947 .