Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: A kinetic and thermal study

[1]  T. Salmi,et al.  Complexation equilibria studies of alkyl formate hydrolysis in the presence of 1-butylimidazole , 2017 .

[2]  T. Salmi,et al.  Influence of gas-liquid mass transfer on kinetic modeling: Carbonation of epoxidized vegetable oils , 2017 .

[3]  S. Caillol,et al.  A perspective approach to sustainable routes for non-isocyanate polyurethanes , 2017 .

[4]  C. Grimmer,et al.  Iron-Based Binary Catalytic System for the Valorization of CO2 into Biobased Cyclic Carbonates , 2016 .

[5]  Elena Orgilés-Calpena,et al.  Synthesis of polyurethanes from CO2-based polyols: A challenge for sustainable adhesives , 2016 .

[6]  L. Verdolotti,et al.  Bio-based polyurethane foams from renewable resources , 2016 .

[7]  Xianjun Lang,et al.  Green Catalytic Process for Cyclic Carbonate Synthesis from Carbon Dioxide under Mild Conditions. , 2016, Chemical record.

[8]  Олег Львович Фиговский,et al.  НЕИЗОЦИАНАТНЫЕ ПОЛИУРЕТАНЫ – ВЧЕРА, СЕГОДНЯ И ЗАВТРА , 2016 .

[9]  S. Leveneur,et al.  Thermal Stability of Epoxidized and Carbonated Vegetable Oils , 2016 .

[10]  David Edouard,et al.  Polydopamine-coated open cell polyurethane foams as an inexpensive, flexible yet robust catalyst support: a proof of concept. , 2016, Chemical communications.

[11]  C. Duval,et al.  Organocatalytic synthesis of novel renewable non‐isocyanate polyhydroxyurethanes , 2016 .

[12]  P. Dubois,et al.  Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines To Achieve Thermosets or Thermoplastics , 2016 .

[13]  Johan Wärnå,et al.  Kinetic modeling strategy for an exothermic multiphase reactor system: Application to vegetable oils epoxidation using Prileschajew method , 2016 .

[14]  O. Figovsky,et al.  NON-ISOCYANATE POLYURETHANES – YESTERDAY , TODAY AND TOMORROW , 2016 .

[15]  Zuzanna Żołek-Tryznowska,et al.  Facile route to multigram synthesis of environmentally friendly non-isocyanate polyurethanes , 2015 .

[16]  É. Grau,et al.  Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s. , 2015, Chemical reviews.

[17]  T. Salmi,et al.  Carbonation of Vegetable Oils: Influence of Mass Transfer on Reaction Kinetics , 2015 .

[18]  Lei Meng Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings , 2015 .

[19]  É. Grau,et al.  Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors , 2014 .

[20]  S. Caillol,et al.  Rational investigations in the ring opening of cyclic carbonates by amines , 2014 .

[21]  T. Salmi,et al.  Interaction of thermal and kinetic parameters for a liquid–liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid , 2014 .

[22]  T. Endo,et al.  Synthesis and properties of polyhydroxyurethane bearing silicone backbone , 2014 .

[23]  R. P. Tiger,et al.  Nonisocyanate polyurethanes from amines and cyclic carbonates: Kinetics and mechanism of a model reaction , 2014, Polymer Science Series B.

[24]  R. Lambeth,et al.  Organocatalytic synthesis of (poly)hydroxyurethanes from cyclic carbonates and amines , 2013 .

[25]  M. Meier,et al.  Sustainable routes to polyurethane precursors , 2013 .

[26]  W. Leitner,et al.  Substrate dependent synergetic and antagonistic interaction of ammonium halide and polyoxometalate catalysts in the synthesis of cyclic carbonates from oleochemical epoxides and CO2 , 2013 .

[27]  I. Javni,et al.  Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route , 2013 .

[28]  R. Mülhaupt,et al.  Glycerol-, pentaerythritol- and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation , 2013 .

[29]  V. C. Malshe,et al.  Non-isocyanate polyurethanes: from chemistry to applications , 2013 .

[30]  G. Lligadas,et al.  Renewable Polyols for Polyurethane Synthesis via Thiol-ene/yne Couplings of Plant Oils , 2013 .

[31]  L. Rios,et al.  Carbonation of Epoxidized Soybean Oil Improved by the Addition of Water , 2013 .

[32]  R. P. Tiger,et al.  Mechanism of urethane formation from cyclocarbonates and amines: a quantum chemical study , 2012, Russian Chemical Bulletin.

[33]  Moritz Bähr,et al.  Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes , 2012 .

[34]  H. Cramail,et al.  Solubility in CO2 and swelling studies by in situ IR spectroscopy of vegetable-based epoxidized oils as polyurethane precursors , 2012 .

[35]  R. Mülhaupt,et al.  Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion , 2012 .

[36]  T. Endo,et al.  Branched cationic polyurethane prepared by polyaddition of chloromethylated five‐membered cyclic carbonate and diethylenetriamine in molten salts , 2012 .

[37]  H. Cramail,et al.  Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: towards novel precursors for polyurethane synthesis , 2010 .

[38]  V. Cádiz,et al.  Biobased polyurethanes from polyether polyols obtained by ionic‐coordinative polymerization of epoxidized methyl oleate , 2010 .

[39]  M. Möller,et al.  Synthesis, Characterization, and Selectivity of Bifunctional Couplers , 2010 .

[40]  D. Samios,et al.  The polymerization products of epoxidized oleic acid and epoxidized methyl oleate with cis-1,2-cyclohexanedicarboxylic anhydride and triethylamine as the initiator: Chemical structures, thermal and electrical properties , 2010 .

[41]  M. North,et al.  Mechanism of Cyclic Carbonate Synthesis from Epoxides and CO2** , 2009, Angewandte Chemie.

[42]  I. Javni,et al.  Soy‐based polyurethanes by nonisocyanate route , 2008 .

[43]  Zoran S. Petrović,et al.  Polyurethanes from Vegetable Oils , 2008 .

[44]  P. Deepa,et al.  Solvent‐induced self‐organization approach for polymeric architectures of micropores, hexagons and spheres based on polyurethanes prepared via novel melt transurethane methodology , 2007 .

[45]  S. S. Skorokhodov,et al.  Kinetic study of aminolysis of poly(vinylene carbonate) and related model compounds , 2007 .

[46]  P. S. Deshpande Chemical Modifications of Lipids for Applications in Chemical Industry , 2006 .

[47]  S. Erhan,et al.  Synthesis of carbonated fatty methyl esters using supercritical carbon dioxide. , 2005, Journal of agricultural and food chemistry.

[48]  Daisuke Nagai,et al.  Kinetic and computational studies on aminolysis of bicyclic carbonates bearing alicyclic structure giving alicyclic hydroxyurethanes , 2005 .

[49]  V. Irzhak,et al.  Reactivity of Cyclocarbonate Groups in Modified Epoxy–Amine Compositions , 2003 .

[50]  T. Deberdeev,et al.  Study of the Curing Kinetics for Modified Epoxy Amine Systems Using Model Compounds , 2003 .

[51]  T. Endo,et al.  Polyaddition of bis(seven-membered cyclic carbonate) with diamines: A novel and efficient synthetic method for polyhydroxyurethanes , 2001 .

[52]  T. Endo,et al.  Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring‐opening direction in the reaction of five‐membered cyclic carbonates with amine , 2001 .

[53]  T. Endo,et al.  Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five‐membered cyclic carbonate and diamine based on the model reaction , 2001 .

[54]  H. Stephen Stoker,et al.  General, Organic, and Biological Chemistry , 1997 .

[55]  Thomas Buergel,et al.  Epoxy resins with cyclic carbonate structures , 1993 .

[56]  Thomas Buergel,et al.  Reactions of cyclic carbonates with amines: Model studies for curing process , 1991 .

[57]  J. Brosse,et al.  Monomères acryliques à fonction carbonate cyclique, 2 Modification chimique de copolymères à groupements carbonate cyclique lateraux , 1990 .

[58]  George Woods,et al.  The ICI Polyurethanes Book , 1987 .

[59]  T. Iizawa,et al.  Convenient syntheses of cyclic carbonates by new reaction of oxiranes with β-butyrolactone , 1986 .

[60]  A. Hautfenne Standard methods for the analysis of oils, fats and derivatives, 6th Edition. 1st Supplement: Part 5 (1982) Section III, Glycerines. Section IV, Alkaline soaps , 1982 .

[61]  D. Swern,et al.  Determination of Oxirane Oxygen , 1947 .