Global disruption of degree rank order: a hallmark of chronic pain

[1]  J. Farrar,et al.  The dorsal posterior insula subserves a fundamental role in human pain , 2015, Nature Neuroscience.

[2]  K. Davis,et al.  The dynamic pain connectome , 2015, Trends in Neurosciences.

[3]  Danielle S Bassett,et al.  Learning-induced autonomy of sensorimotor systems , 2014, Nature Neuroscience.

[4]  A. Vania Apkarian,et al.  Functional Reorganization of the Default Mode Network across Chronic Pain Conditions , 2014, PloS one.

[5]  A. V. Apkarian,et al.  Resting-sate functional reorganization of the rat limbic system following neuropathic injury , 2014, Scientific Reports.

[6]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[7]  Massimo Contini,et al.  Role of nucleus accumbens in neuropathic pain: Linked multi-scale evidence in the rat transitioning to neuropathic pain , 2014, PAIN®.

[8]  O. Sporns,et al.  From Connections to Function: The Mouse Brain Connectome Atlas , 2014, Cell.

[9]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[10]  Franco Cauda,et al.  Gray matter alterations in chronic pain: A network-oriented meta-analytic approach , 2014, NeuroImage: Clinical.

[11]  Marwan N Baliki,et al.  Reorganization of hippocampal functional connectivity with transition to chronic back pain. , 2014, Journal of neurophysiology.

[12]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[13]  M. Baliki,et al.  Chronic pain: the role of learning and brain plasticity. , 2014, Restorative neurology and neuroscience.

[14]  Thomas J. Schnitzer,et al.  Brain white matter structural properties predict transition to chronic pain , 2013, PAIN®.

[15]  Jonathan D. Power,et al.  Evidence for Hubs in Human Functional Brain Networks , 2013, Neuron.

[16]  Alan D. Lopez,et al.  Measuring the global burden of disease. , 2013, The New England journal of medicine.

[17]  Simon B. Eickhoff,et al.  An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data , 2013, NeuroImage.

[18]  Ajay D. Wasan,et al.  Default mode network connectivity encodes clinical pain: An arterial spin labeling study , 2013, PAIN®.

[19]  E. Bullmore,et al.  Hubs of brain functional networks are radically reorganized in comatose patients , 2012, Proceedings of the National Academy of Sciences.

[20]  M. Baliki,et al.  A dynamic network perspective of chronic pain , 2012, Neuroscience Letters.

[21]  Thomas J. Schnitzer,et al.  Corticostriatal functional connectivity predicts transition to chronic back pain , 2012, Nature Neuroscience.

[22]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[23]  Jelena Radulovic,et al.  Abnormalities in Hippocampal Functioning with Persistent Pain , 2012, The Journal of Neuroscience.

[24]  Edward T. Bullmore,et al.  The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia , 2012, NeuroImage.

[25]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[26]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[27]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[28]  A. Vania Apkarian,et al.  Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain , 2011, PAIN.

[29]  Olaf Sporns,et al.  The Non-Random Brain: Efficiency, Economy, and Complex Dynamics , 2010, Front. Comput. Neurosci..

[30]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[31]  D. Chialvo,et al.  Brain resting state is disrupted in chronic back pain patients , 2010, Neuroscience Letters.

[32]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[33]  Kyungmo Park,et al.  Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. , 2010, Arthritis and rheumatism.

[34]  M. Baliki,et al.  Predicting Value of Pain and Analgesia: Nucleus Accumbens Response to Noxious Stimuli Changes in the Presence of Chronic Pain , 2010, Neuron.

[35]  M. Koskinen,et al.  Aberrant temporal and spatial brain activity during rest in patients with chronic pain , 2010, Proceedings of the National Academy of Sciences.

[36]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[37]  Edward T. Bullmore,et al.  SYSTEMS NEUROSCIENCE Original Research Article , 2009 .

[38]  K. Sacco,et al.  Altered resting state attentional networks in diabetic neuropathic pain , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[39]  David Julius,et al.  Cellular and Molecular Mechanisms of Pain , 2009, Cell.

[40]  M. Corbetta,et al.  Learning sculpts the spontaneous activity of the resting human brain , 2009, Proceedings of the National Academy of Sciences.

[41]  E. Bullmore,et al.  Human brain networks in health and disease , 2009, Current opinion in neurology.

[42]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[43]  M. Baliki,et al.  Towards a theory of chronic pain , 2009, Progress in Neurobiology.

[44]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[45]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[46]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[47]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[48]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[49]  C. Woolf,et al.  Spared nerve injury: an animal model of persistent peripheral neuropathic pain , 2000, Pain.

[50]  C. Woolf,et al.  Neuronal plasticity: increasing the gain in pain. , 2000, Science.

[51]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[52]  T. Yaksh,et al.  Quantitative assessment of tactile allodynia in the rat paw , 1994, Journal of Neuroscience Methods.

[53]  C. Goldsmith,et al.  Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. , 1988, The Journal of rheumatology.

[54]  Ronald Melzack,et al.  The short-form McGill pain questionnaire , 1987, Pain.