Penalty/Barrier multiplier algorthm for semidefinit programming

We present a generalization of the Penalty/Barrier Multiplier algorithm for semidefinite programming, based on a matrix form of Lagrange multipliers. Our approach allows to use among others logarithmic, shifted logarithmic, exponential and a very effective quadratic-logarithmic penalty/Barrier functions. We present a dual analysis of the method, based on its correspondence to a proximal point algorithm with a nonquadratic distance-like function. We give computationally tractable dual bounds, which are produced by the Legendre transformation of the penalty function. Numerical results for large-scale problems from robust control, robust truss topology design and free material design demonstrate high efficiency of the algorithm

[1]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[2]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[3]  D. Bertsekas,et al.  Multiplier methods for convex programming , 1973, CDC 1973.

[4]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[5]  Michael Zibulevsky,et al.  Penalty/Barrier Multiplier Methods for Large-Scale Nonlinear and Semidefinite Programming , 1996 .

[6]  David F. Shanno,et al.  A Globally Convergent Penalty-Barrier Algorithm for Nonlinear Programming , 1995 .

[7]  Martin P. Bendsøe,et al.  A New Method for Optimal Truss Topology Design , 1993, SIAM J. Optim..

[8]  Marc Teboulle,et al.  An Interior Proximal Algorithm and the Exponential Multiplier Method for Semidefinite Programming , 1998, SIAM J. Optim..

[9]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[10]  Paul Tseng,et al.  On the convergence of the exponential multiplier method for convex programming , 1993, Math. Program..

[11]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[12]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[13]  Yurii Nesterov,et al.  Multi-Parameter Surfaces of Analytic Centers and Long-Step Surface-Following Interior Point Methods , 1998, Math. Oper. Res..

[14]  Arkadi Nemirovski,et al.  The projective method for solving linear matrix inequalities , 1997, Math. Program..

[15]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[16]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[17]  F. Jarre An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices , 1993 .

[18]  Roman A. Polyak,et al.  Modified barrier functions (theory and methods) , 1992, Math. Program..

[19]  Adrian S. Lewis,et al.  Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..

[20]  Michael Zibulevsky,et al.  Penalty/Barrier Multiplier Methods for Convex Programming Problems , 1997, SIAM J. Optim..

[21]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[22]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[23]  Stephen P. Boyd,et al.  Method of centers for minimizing generalized eigenvalues , 1993, Linear Algebra and its Applications.