Exploration of Variable Codes Algorithm for Linings Materials and its Thickness Selection of Steel Casting Ladles

Present work intends the mathematical modeling and solution algorithm for the optimal materials and it thickness selection of the refractory linning of steel casting ladles task. In it solution the Exploration of Variable Codes Algorithm of the Integration of Variables Method is used. The proposed model constitutes an improvement of the previously published one. The obtained numeric results and their comparison with the published previous algorithm, applied to the proposed model are offered. The numeric comparison of both algorithms sample that the one proposed in this article offers better results that the one used for the comparison.

[1]  J. Sancho,et al.  Corrosion Mechanism and Wear Prediction of the Sole of an Electric Arc Furnace , 2003 .

[2]  Yogesh Jaluria,et al.  Design and Optimization of Thermal Systems , 1997 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  M. Díaz,et al.  An approach for Assembly Sequence Planning based on Max-Min Ant System , 2015, IEEE Latin America Transactions.

[5]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[7]  P. Boisse,et al.  Computations of refractory lining structures under thermal loadings , 2000 .

[8]  W. Stoecker Design of thermal systems , 1971 .

[9]  P. Boisse,et al.  Simulations of thermomechanical behavior of composite refractory linings , 2001 .

[10]  Andrzej P. Wierzbicki,et al.  Aspiration Based Decision Support Systems: Theory, Software and Applications , 1989 .

[11]  F. Cardarelli Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .

[12]  Marko Pfeifer,et al.  Materials For Engineering , 2016 .

[13]  S. M. Sapuan,et al.  A comprehensive VIKOR method for material selection , 2011, Materials & Design.

[14]  M. D. Arango,et al.  A Memetic Algorithm for the Traveling Salesman Problem , 2015, IEEE Latin America Transactions.

[15]  J. A. Ruiz,et al.  Selección óptima bajo criterios múltiples de materiales refractarios y aislantes para cazuelas metalúrgicas , 2016 .

[16]  S. M. Sapuan,et al.  Material screening and choosing methods: A review , 2010 .

[17]  Luis Felipe Verdeja,et al.  Nodal wear model: corrosion in carbon blast furnace hearths , 2003 .

[18]  Ingo Wegener,et al.  Complexity theory - exploring the limits of efficient algorithms , 2005 .

[19]  C. Schacht Refractory Linings : ThermoMechanical Design and Applications , 2017 .

[20]  Ali Shanian,et al.  TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell , 2006 .

[21]  D. L. Brownell,et al.  Handbook of Applied Thermal Design , 1988 .