Automated distribution of quantum circuits via hypergraph partitioning

Quantum algorithms are usually described as monolithic circuits, becoming large at modest input size. Near-term quantum architectures can only manage a small number of qubits. We develop an automated method to distribute quantum circuits over multiple agents, minimising quantum communication between them. We reduce the problem to hypergraph partitioning and then solve it with state-of-the-art optimisers. This makes our approach useful in practice, unlike previous methods. Our implementation is evaluated on five quantum circuits of practical relevance.

[1]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[2]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[3]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[4]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[5]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[7]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[8]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[10]  W. Marsden I and J , 2012 .

[11]  Andrew M. Childs,et al.  Circuit Transformations for Quantum Architectures , 2019, TQC.

[12]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[13]  Vivek Sarkar,et al.  Partitioning and scheduling parallel programs for execution on multiprocessors , 1987 .

[14]  Michele Mosca,et al.  Quantum circuit optimizations for NISQ architectures , 2019, Quantum Science and Technology.

[15]  Oded Regev,et al.  Quantum computation and lattice problems , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[16]  C. Ross Found , 1869, The Dental register.

[17]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[18]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[19]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[20]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[21]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[22]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[23]  B. M. Fulk MATH , 1992 .

[24]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[27]  Aleks Kissinger,et al.  CNOT circuit extraction for topologically-constrained quantum memories , 2019, Quantum Inf. Comput..

[28]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[29]  Ross Duncan,et al.  Phase Gadget Synthesis for Shallow Circuits , 2019, QPL.

[30]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[31]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[32]  Laurent Lyaudet NP-hard and linear variants of hypergraph partitioning , 2010, Theor. Comput. Sci..

[33]  A. Reiserer,et al.  Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond. , 2015, Faraday discussions.

[34]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[35]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[36]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[37]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[38]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[39]  Robert Wille,et al.  Wire recycling for quantum circuit optimization , 2016, 1609.00803.

[40]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N ON A QUANTUM COMPUTER∗ , 2010 .

[41]  Andris Ambainis,et al.  Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer , 2010, SIAM J. Comput..

[42]  C. Simon,et al.  Robust long-distance entanglement and a loophole-free bell test with ions and photons. , 2003, Physical review letters.

[43]  Peter Sanders,et al.  Engineering a direct k-way Hypergraph Partitioning Algorithm , 2017, ALENEX.

[44]  Mahboobeh Houshmand,et al.  Optimizing Teleportation Cost in Distributed Quantum Circuits , 2016, ArXiv.

[45]  Andrew Steane,et al.  Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes , 2015, Nature.

[46]  Iordanis Kerenidis,et al.  Shortcuts to quantum network routing , 2015, ArXiv.

[47]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[48]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[49]  Samuel J. Lomonaco,et al.  Generalized GHZ States and Distributed Quantum Computing , 2004 .

[50]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[51]  Ümit V. Çatalyürek,et al.  PaToH: Partitioning Tool for Hypergraphs , 1999 .

[52]  R. Feynman Simulating physics with computers , 1999 .

[53]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[54]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.