Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol.

[1]  C. Benadiba,et al.  Detecting nanoscale vibrations as signature of life , 2014, Proceedings of the National Academy of Sciences.

[2]  L. Dini,et al.  Impact of Inhomogeneous Static Magnetic Field (31.7–232.0 mT) Exposure on Human Neuroblastoma SH-SY5Y Cells during Cisplatin Administration , 2014, PloS one.

[3]  G. Diakun,et al.  The Diamagnetic Susceptibility of the Tubulin Dimer , 2014, Journal of biophysics.

[4]  Jordan Ma,et al.  Mechanism of action of antitumor drugs that interact with microtubules and tubulin. , 2012 .

[5]  J. Wakefield,et al.  50 ways to build a spindle: the complexity of microtubule generation during mitosis , 2011, Chromosome Research.

[6]  L. Ying,et al.  Effects of a moderate‐intensity static magnetic field and adriamycin on K562 cells , 2011, Bioelectromagnetics.

[7]  Y. Liu,et al.  Static magnetic fields enhanced the potency of cisplatin on k562 cells. , 2010, Cancer biotherapy & radiopharmaceuticals.

[8]  G. Brix,et al.  Static magnetic fields impair angiogenesis and growth of solid tumors in vivo , 2009, Cancer biology & therapy.

[9]  Arthur D. Rosen,et al.  Effect of long term exposure to 0.5 T static magnetic fields on growth and size of GH3 cells , 2009, Bioelectromagnetics.

[10]  Y. Liu,et al.  Tubulin assembly is disordered in a hypogeomagnetic field. , 2008, Biochemical and biophysical research communications.

[11]  James K Gimzewski,et al.  Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[12]  J. Tabony,et al.  Brief exposure to high magnetic fields determines microtubule self-organisation by reaction-diffusion processes. , 2005, Biophysical chemistry.

[13]  A. Desai,et al.  Kinetochore-spindle microtubule interactions during mitosis. , 2005, Current opinion in cell biology.

[14]  Andrew E. Pelling,et al.  Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae , 2004, Science.

[15]  M. Cammer,et al.  Gene expression and mitotic exit induced by microtubule-stabilizing drugs. , 2003, Cancer research.

[16]  S. Tofani,et al.  Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. , 2003, Pharmacological research.

[17]  C. Bonechi,et al.  The effect of strong static magnetic field on lymphocytes , 2003, Bioelectromagnetics.

[18]  L. Mirossay,et al.  Effects of static magnetic field on human leukemic cell line HL-60. , 2002, Bioelectrochemistry.

[19]  S. Tofani,et al.  Increased mouse survival, tumor growth inhibition and decreased immunoreactive p53 after exposure to magnetic fields , 2002, Bioelectromagnetics.

[20]  S. Horwitz,et al.  Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. , 2002, Cancer research.

[21]  J. Parker,et al.  In vivo enhancement of chemotherapy with static electric or magnetic fields. , 2000, Bioelectromagnetics.

[22]  J. Crown,et al.  The taxanes: an update , 2000, The Lancet.

[23]  G. Maret,et al.  The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and x-ray fiber diffraction study. , 1998, Biophysical journal.

[24]  A. Hyman,et al.  Morphogenetic Properties of Microtubules and Mitotic Spindle Assembly , 1996, Cell.

[25]  S. Lippard,et al.  Cisplatin and DNA repair in cancer chemotherapy. , 1995, Trends in biochemical sciences.

[26]  Jack A. Tuszynski,et al.  Ferroelectric behavior in microtubule dipole lattices: Implications for information processing, signaling and assembly/disassembly* , 1995 .

[27]  Tuszynski,et al.  Kinklike excitations as an energy-transfer mechanism in microtubules. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[29]  P. Vassilev,et al.  Parallel arrays of microtubles formed in electric and magnetic fields , 1982 .

[30]  Fuchs Da,et al.  Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. , 1978 .

[31]  G. Ciarimboli Membrane transporters as mediators of cisplatin side-effects. , 2014, Anticancer research.

[32]  S. A. Action of Taxol on Mitosis : Modification of Microtubule Arrangements and Function of the Mitotic Spindle in Haemanthus Endosperm , 2003 .

[33]  M. Jordan,et al.  Mechanism of action of antitumor drugs that interact with microtubules and tubulin. , 2002, Current medicinal chemistry. Anti-cancer agents.

[34]  Seth M. Cohen,et al.  Cisplatin: from DNA damage to cancer chemotherapy. , 2001, Progress in nucleic acid research and molecular biology.

[35]  A. Hyman,et al.  The spindle: a dynamic assembly of microtubules and motors , 2001, Nature Cell Biology.

[36]  S. Parangi,et al.  Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. , 1997, Cancer research.

[37]  R L Wahl,et al.  Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. , 1996, Bioelectromagnetics.

[38]  P. Vassilev,et al.  Parallel arrays of microtubules formed in electric and magnetic fields. , 1982, Bioscience reports.

[39]  R. Johnson,et al.  Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. , 1978, Cancer treatment reports.