Benthic jellyfish act as suction pumps to facilitate release of interstitial porewater

[1]  B. Gemmell,et al.  Aggregation and Defence , 2022, bioRxiv.

[2]  S. Ahyong,et al.  Physiological responses of the upside-down jellyfish, Cassiopea (Cnidaria: Scyphozoa: Cassiopeidae) to temperature and implications for their range expansion along the east coast of Australia , 2022, Journal of Experimental Marine Biology and Ecology.

[3]  David B. Lewis,et al.  Benthic jellyfish dominate water mixing in mangrove ecosystems , 2019, Proceedings of the National Academy of Sciences.

[4]  Kelsey N. Lucas,et al.  The Hydrodynamics of Jellyfish Swimming. , 2020, Annual review of marine science.

[5]  M. Alldred,et al.  Size and density of upside-down jellyfish, Cassiopea sp., and their impact on benthic fluxes in a Caribbean lagoon. , 2020, Marine environmental research.

[6]  M. Hossain,et al.  A review of bioturbation and sediment organic geochemistry in mangroves , 2019, Geological Journal.

[7]  Keith Atkin Investigating the Torricelli law using a pressure sensor with the Arduino and MakerPlot , 2018, Physics Education.

[8]  Hailong Li,et al.  Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater-groundwater exchange. , 2018, The Science of the total environment.

[9]  A. Kunzmann,et al.  Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change , 2017 .

[10]  S. Ahyong,et al.  First records of the invasive Upside-down jellyfish, Cassiopea (Cnidaria: Scyphozoa: Rhizostomeae: Cassiopeidae), from coastal lakes of New South Wales, Australia , 2016 .

[11]  S. Sommer,et al.  Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study , 2014 .

[12]  R. Satterlie,et al.  Organization of the Ectodermal Nervous Structures in Jellyfish: Scyphomedusae , 2014, The Biological Bulletin.

[13]  L. Miller,et al.  Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish , 2012, Journal of Experimental Biology.

[14]  C. Wild,et al.  Enhanced pore-water nutrient fluxes by the upside-down jellyfish Cassiopea sp. in a Red Sea coral reef , 2010 .

[15]  S. Thrush,et al.  Ecosystem functioning in a disturbance-recovery context: contribution of macrofauna to primary production and nutrient release on intertidal sandflats. , 2010 .

[16]  T. Meziane,et al.  Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production , 2009, Hydrobiologia.

[17]  E. Davey,et al.  Effects of hypoxia on animal burrow construction and consequent effects on sediment redox profiles , 2009 .

[18]  A. Szmant,et al.  Water column and sediment nitrogen and phosphorus distribution patterns in the Florida Keys, USA , 1996, Coral Reefs.

[19]  M. Dawson,et al.  Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands , 2004 .

[20]  M. Huettel,et al.  Rapid wave-driven advective pore water exchange in a permeable coastal sediment , 2004 .

[21]  D. Lawrence,et al.  Wind events and benthic-pelagic coupling in a shallow subtropical bay in Florida , 2004 .

[22]  John P. O'Neill,et al.  Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest , 2003 .

[23]  C. Lovelock,et al.  Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida , 2003, Oecologia.

[24]  W. Fitt,et al.  The role of temperature in survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana , 1998 .

[25]  R. Larson Feeding behaviour of Caribbean Scyphomedusae: Cassiopea frondosa (Pallas) and Cassiopea xamachana Bigelow , 1997 .

[26]  Q. Dortch,et al.  The interaction between ammonium and nitrate uptake in phytoplankton , 1990 .