A simple, fast and convenient new method for predicting the stability of nitro compounds

A new method has been proposed to understand and predict the stability of nitro compounds. This method uses the maximum electron densities at the critical points of two N–O bonds of nitro groups (ρmax), and it is more simple and faster than the existing methods and applicable to bigger systems. The correlations between the ρmax and total energy (E), bond lengths ($$ R_{{{\text{C}}{-}{\text{NO}}_{2} }} $$RC-NO2, $$ R_{{{\text{N}}{-}{\text{NO}}_{2} }} $$RN-NO2 and $$ R_{{{\text{O}}{-}{\text{NO}}_{2} }} $$RO-NO2), bond dissociation energy (BDE), and impact sensitivity (h50) reveal that the molecular stability, which can be reflected by E, R, BDE and h50, generally decreases with the increasing ρmax. The compound with the larger ρmax is less stable. For the nitrating reaction, the smaller ρmax of the product generally implies the easier and faster reaction and the higher occurrence ratio of the product. Therefore, ρmax can be applied to predict the stability of nitro compounds and the easiness of the nitrating reaction.

[1]  S. Mannan,et al.  Studies on energetic compounds part 8 : thermolysis of salts of HNO(3) and HClO(4). , 2000, Journal of hazardous materials.

[2]  Philip F. Pagoria,et al.  High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX , 2012 .

[3]  Guixiang Wang,et al.  Theoretical studies on 2-diazo-4,6-dinitrophenol derivatives aimed at finding superior propellants , 2012, Journal of Molecular Modeling.

[4]  B. Rice,et al.  A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules , 2002 .

[5]  M. A. Cook,et al.  The science of high explosives. , 1958 .

[6]  B. Twamley,et al.  New roles for 1,1-diamino-2,2-dinitroethene (FOX-7): halogenated FOX-7 and azo-bis(diahaloFOX) as energetic materials and oxidizers. , 2013, Journal of the American Chemical Society.

[7]  A. Delpuech,et al.  Relation entre La Structure Electronique et la Sensibilité au Choc des Explosifs Secondaires Nitrés. Critère Moléculaire de Sensibilité II. Cas des esters nitriques , 1979 .

[8]  Chaoyang Zhang Review of the establishment of nitro group charge method and its applications. , 2009, Journal of hazardous materials.

[9]  Jacqueline Akhavan,et al.  The chemistry of explosives , 1998 .

[10]  M. J. Kamlet,et al.  The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives , 1979 .

[11]  V. Ghule Computational studies on energetic properties of trinitro-substituted imidazole-triazole and pyrazole-triazole derivatives. , 2012, The journal of physical chemistry. A.

[12]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[13]  Y. Shu,et al.  Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. , 2005, The journal of physical chemistry. B.

[14]  J. Shreeve,et al.  Trinitromethyl-substituted 5-nitro- or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. , 2011, Journal of the American Chemical Society.

[15]  Heming Xiao,et al.  A density functional theory investigation of 1,1-diamino-2,2-dinitroethylene dimers and crystal , 2003 .

[16]  Xinlu Cheng,et al.  Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules , 2005 .

[17]  S. Benson,et al.  Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters , 1976 .

[18]  A. Sikder,et al.  Theoretical studies on the structure and detonation properties of amino-, methyl-, and nitro-substituted 3,4,5-trinitro-1H-pyrazoles. , 2010, Journal of hazardous materials.

[19]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[20]  Anna Maria Almerico,et al.  Molecular dynamics, dynamic site mapping, and highthroughput virtual screening on leptin and the Ob receptor as anti-obesity target , 2014, Journal of Molecular Modeling.

[21]  Heming Xiao,et al.  Strain energies of cubane derivatives with different substituent groups. , 2008, Journal of hazardous materials.

[22]  Chongwei An,et al.  Preparation and Properties of 2,6‐Diamino‐3,5‐dinitropyrazine‐1‐oxide based Nanocomposites , 2013 .

[23]  Y. Bayat,et al.  Preparation and Characterization of Nano-CL-20 Explosive , 2011 .

[24]  S. Bulusu Chemistry and physics of energetic materials , 1990 .

[25]  J. Agrawal Recent trends in high-energy materials , 1998 .

[26]  T. Urbański,et al.  Chemistry and technology of explosives , 1984 .

[27]  Hui Liu,et al.  Theoretical studies on the structures, densities, detonation properties and pyrolysis mechanism of energetic compounds containing pyridine ring , 2012, Structural Chemistry.

[28]  X. Gong,et al.  Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. , 2005, The journal of physical chemistry. A.

[29]  Jingxiang Zhao,et al.  Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation. , 2014, Journal of molecular graphics & modelling.

[30]  Hui Liu,et al.  Theoretical studies of -NH2 and -NO2 substituted dipyridines , 2012, Journal of Molecular Modeling.

[31]  P. Politzer,et al.  Detonation Initiation and Sensitivity in Energetic Compounds: Some Computational Treatments , 1999 .

[32]  Guixiang Wang,et al.  A theoretical study on the vibrational spectra and thermodynamic properties for the nitro derivatives of phenols. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[33]  W. L. Elban,et al.  Crystal size dependence for impact initiation of cyclotrimethylenetrinitramine explosive , 1990 .

[34]  L. Fried,et al.  Design and Synthesis of Energetic Materials1 , 2001 .

[35]  Zhang Chaoyang,et al.  Computational investigation on HEDM of azoic and azoxy derivatives of DAF, FOX-7, TATB, ANPZ and LLM-105 , 2005 .

[36]  Hui Liu,et al.  Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX , 2012, J. Comput. Chem..

[37]  Chaoyang Zhang Investigations of correlation between nitro group charges and C-nitro bond strength, and amino group effects on C-nitro bonds in planar conjugated molecules , 2006 .

[38]  G. S. Lee,et al.  A review of energetic materials synthesis , 2002 .

[39]  R. D. Verma,et al.  Energetic nitrogen-rich salts and ionic liquids. , 2006, Angewandte Chemie.

[40]  M. Tafipolsky,et al.  On the structure and spectra of dinitramide salts , 2001 .

[41]  Yan Liu,et al.  Looking for high energy density compounds applicable for propellant among the derivatives of dpo with n3, ono2, and nno2 groups , 2011, J. Comput. Chem..

[42]  A. Delpuech,et al.  Relation entre la Structure Electronique et la Sensibilité au Choc des Explosifs Secondaires Nitrés-Critère Moléculaire de Sensibilité. I. Cas des Nitroaromatiques et des Nitramines , 1978 .

[43]  R. K. Pandey,et al.  Preparation of Spherical Particles of 1,1-Diamino-2,2-dinitroethene (FOX-7) Using a Micellar Nanoreactor , 2012 .

[44]  Peter Politzer,et al.  Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies , 2009 .

[45]  D. M. Hoffman,et al.  CL‐20 performance exceeds that of HMX and its sensitivity is moderate , 1997 .

[46]  Fude Nie,et al.  Preparation and Properties of Submicrometer‐Sized LLM‐105 via Spray‐Crystallization Method , 2014 .

[47]  Guixiang Wang,et al.  theoretical investigation on the structures , densities , detonation properties and yrolysis mechanism of the nitro derivatives of toluenes , 2010 .

[48]  X. Gong,et al.  A theoretical study on the structure, intramolecular interactions, and detonation performance of hydrazinium dinitramide. , 2014, Chemistry, an Asian journal.

[49]  X. Yao,et al.  Estimation of C−C Bond Dissociation Enthalpies of Large Aromatic Hydrocarbon Compounds Using DFT Methods , 2002 .